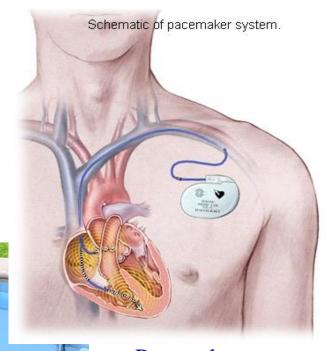
Introduction aux systèmes asservis

Systèmes de régulation

Clim automatique



Pacemaker

Régulateur niveau piscine

Consigne constante

Types de systèmes asservis:

Systèmes suiveurs

Missile à tête chercheuse

Suiveur solaire

Consigne variable

Qui suis je?

Damien Koenig:

- √ 51 ans
- ✓ Enseignant à l'Esisar
- ✓ Recherche au Gipsa-lab UMR CNRS

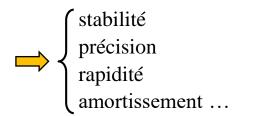
- ✓ Site web à votre disposition
- √http://koenig-damien.jimdo.com/enseignement

But de l'Automatique

Pilote automatique



La sortie doit correspondre au plus près à l'entrée (boucle retour avec capteur)



Quelques applications

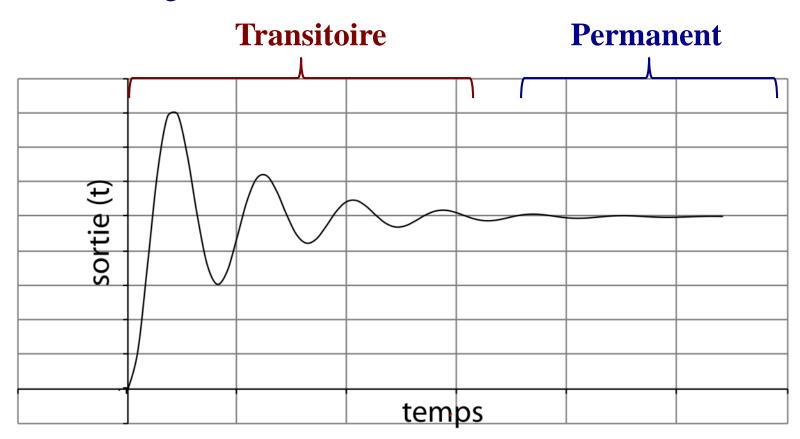
Automobile: ABS/ESP/ASR....

UAV Dassault Aviation "petit duc"

MP 89 CA "METEOR"

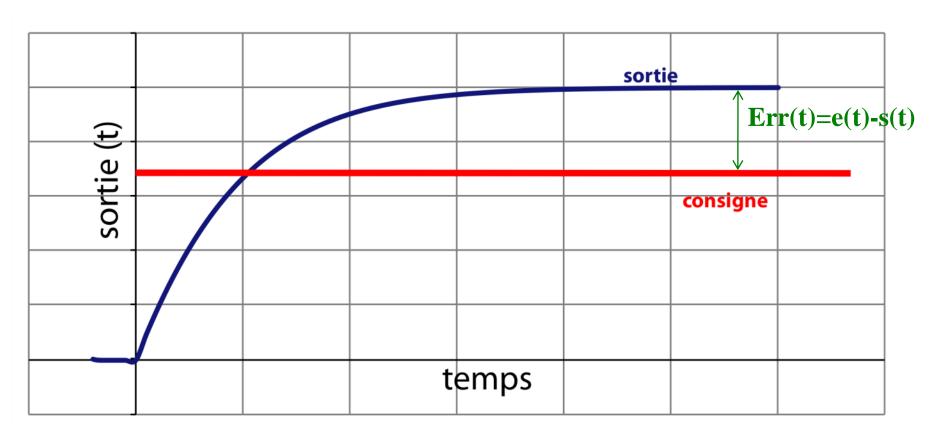
installation d'épuration de gaz de haut-fourneau

Distinction des régimes

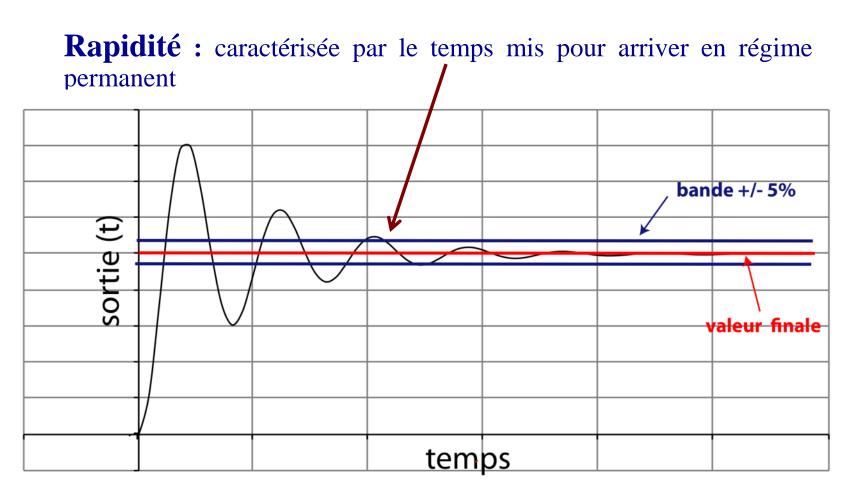


Régime permanent

Précision : écart entre les valeurs souhaitée (consigne) et obtenue (sortie)

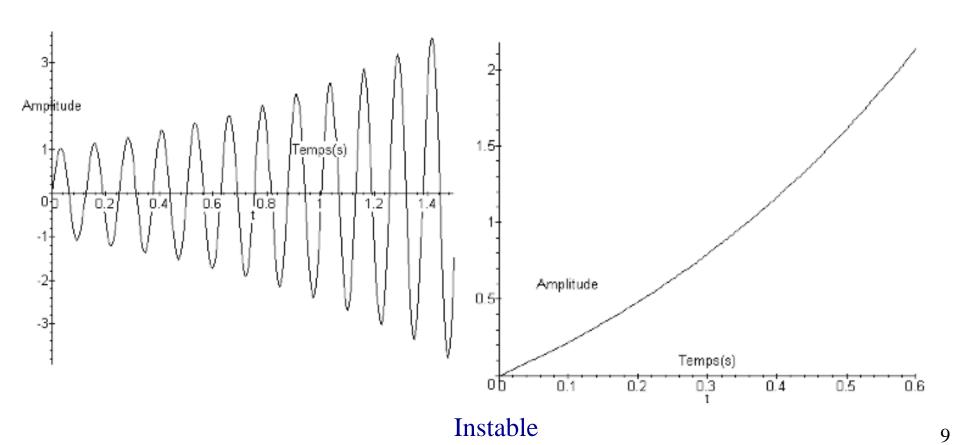


Régime transitoire



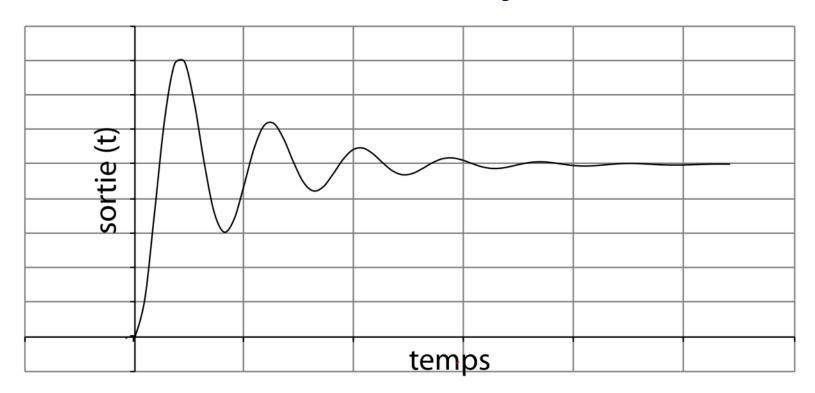
Régime permanent

Stabilité: stable si la sortie est bornée, pour une entrée bornée



Régime permanent

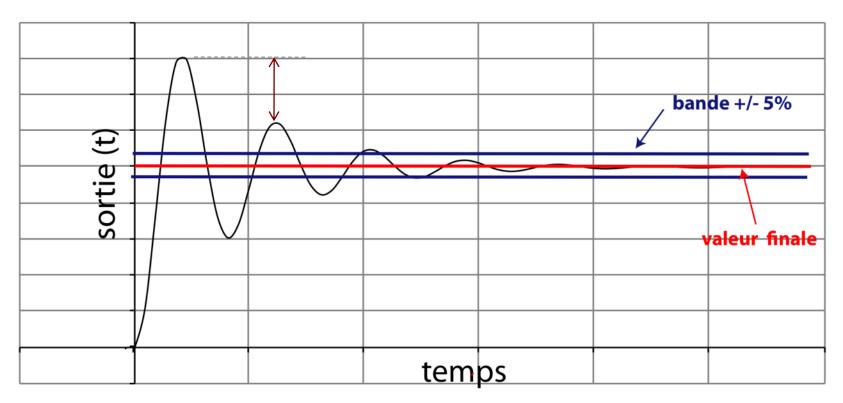
Stabilité: stable si la sortie est bornée, pour une entrée bornée



Stable

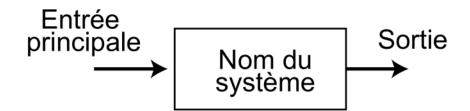
Régime transitoire

Amortissement : caractérisé par la diminution de l'amplitude des oscillations

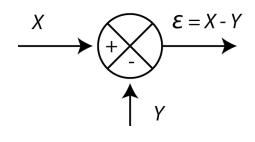


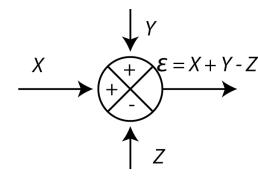
Schématisation par schéma-blocs

Trois éléments de base:

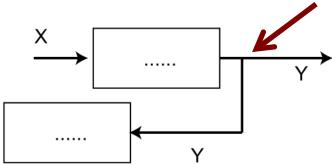


Comparateur (sommateur)





Point de prélèvement



Modèle général

Les SLCI étudiés seront représentables la plupart du temps par des équations différentielles à coefficients constants liant la grandeur d'entrée e(t) à la grandeur de sortie s(t).

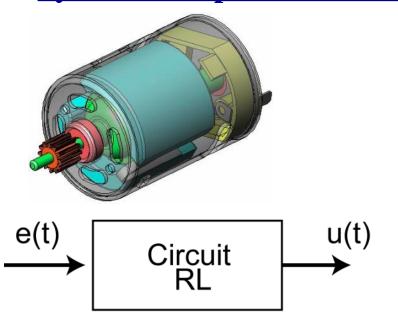
Ordre du système
$$a_{n} \frac{d^{n} s(t)}{dt^{n}} + a_{n-1} \frac{d^{n-1} s(t)}{dt^{n-1}} + \cdots + a_{0} s(t) = b_{m} \frac{d^{m} e(t)}{dt^{m}} + b_{m-1} \frac{d^{m-1} e(t)}{dt^{m-1}} + \cdots + b_{0} e(t)$$

Systèmes du premier ordre

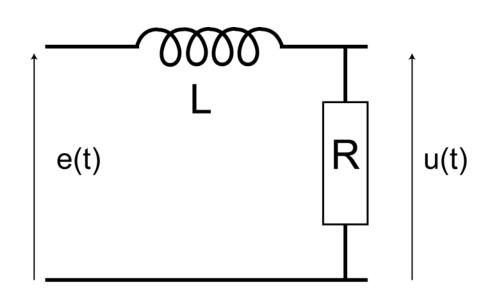
constante de temps du système (s)

$$\tau \frac{d s(t)}{dt} + s(t) = K e(t)$$
Gain du système [s]/[e]

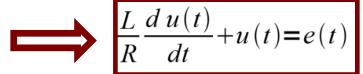
Systèmes du premier ordre



$$e(t) = L \frac{d i(t)}{dt} + R i(t)$$

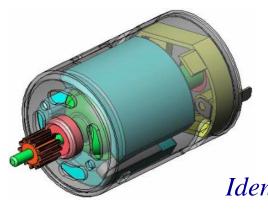


$$u(t) = Ri(t)$$



Exemple: circuit RL (moteur électrique)

Systèmes du premier ordre

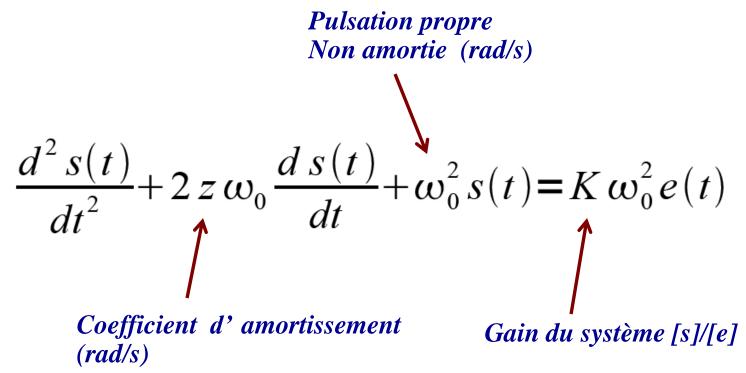


$$\frac{L}{R}\frac{d u(t)}{dt} + u(t) = e(t)$$

Identification avec
$$\tau \frac{d s(t)}{dt} + s(t) = K e(t)$$

$$\Rightarrow \tau = \frac{L}{R}$$
 K=1

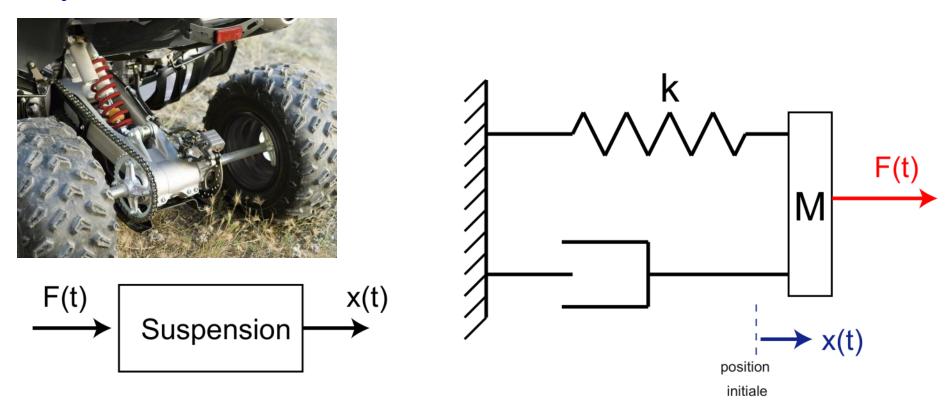
Systèmes du deuxième ordre



Systèmes du deuxième ordre **Amortisseur** Ressort

Exemple: Suspension

Systèmes du deuxième ordre



Systèmes du deuxième ordre

Le Principe Fondamental de la Dynamique appliqué à la masse donne l'équation différentielle :

$$\frac{d^2x(t)}{dt^2} + \frac{b}{M}\frac{dx(t)}{dt} + \frac{k}{M}x(t) = \frac{1}{M}F(t)$$

Identification avec
$$\frac{d^2 s(t)}{dt^2} + 2 z \omega_0 \frac{d s(t)}{dt} + \omega_0^2 s(t) = K \omega_0^2 e(t)$$

$$K = \frac{1}{k}$$
, $\omega_0^2 = \frac{k}{M}$ et $z = \frac{1}{2} \frac{b}{\sqrt{Mk}}$

Exemple: Suspension

2) Les systèmes asservis

valeur obtenue

(sortie).

Un système asservi comporte une boucle retour (capteur) associée à un comparateur > rétroaction de la sortie sur l'entrée (bouclage) Se lit de la **Comparateur Ecart** Chaîne aller ou directe ou d'action gauche vers la droite. **Perturbation** Correcteur Consigne Grandeur asservie **Processus** (entrée) (sortie) **Amplificateur** Représentation graphique : schéma blocs Capteur Compare l'entrée Se lit de la (consigne) à la Différence droite vers

<u>Régulation</u>: sortie reste à une valeur fixée (température four, vitesse moteur...).

Asservissement: la sortie suit une loi fixée (bras de robot...).

entre l'entrée

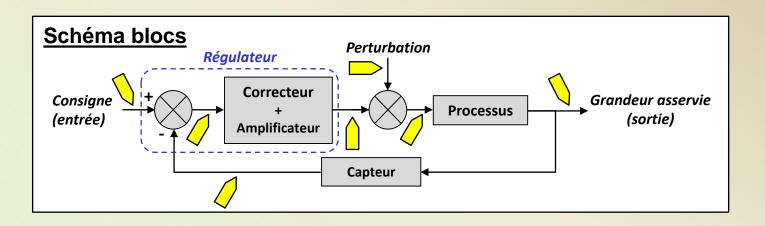
et la sortie.

Trajectoire

Chaîne de retour ou de réaction

la gauche.

Système asservi



Grandeur physique
pouvant évoluer
avec le temps.

<u>Variable</u>

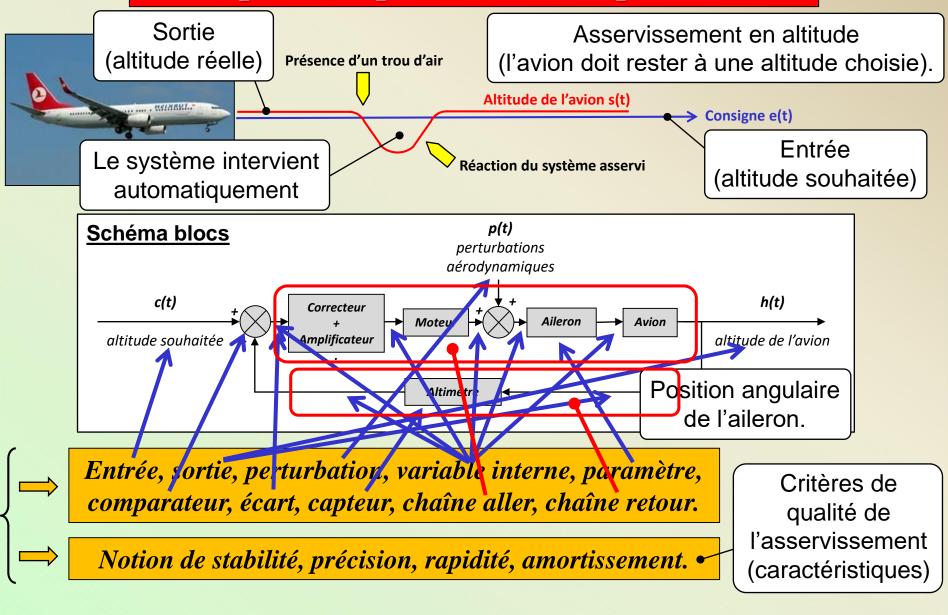
Tension électrique, vitesse, température, angle...

- Entrée : réglable, indépendante du système.
- Perturbation: entrée sur laquelle on ne peut agir.
- Sortie : dépendante du système.
- ► Interne : dépendante du système.

<u>Paramètre</u>

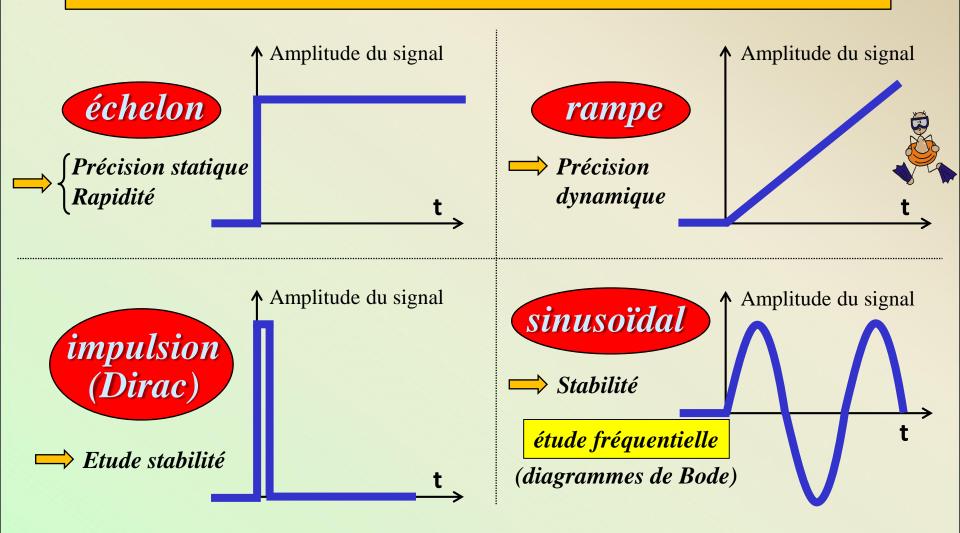
Grandeur physique indépendante du temps.

Exemple d'un pilote automatique d'avion



Signaux d'entrée

L'étude d'un système asservi se fait à travers le comportement du système en réponse à des signaux d'entrée particuliers



Analyse temporelle d'un 1er ordre

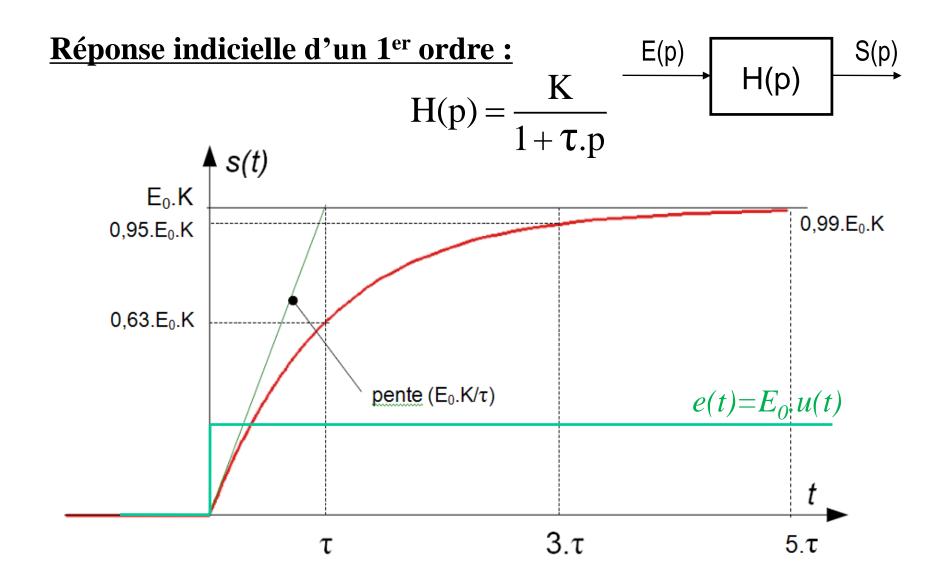
Système du 1^{er} ordre (forme canonique) :

$$H(p) = \frac{K}{1 + \tau.p} \xrightarrow{E(p)} H(p) \xrightarrow{S(p)}$$

avec : τ : constante de temps (unité : seconde)

K: gain statique (unité: [s] / [e])

Analyse temporelle d'un 1er ordre



Analyse temporelle d'un 1^{er} ordre

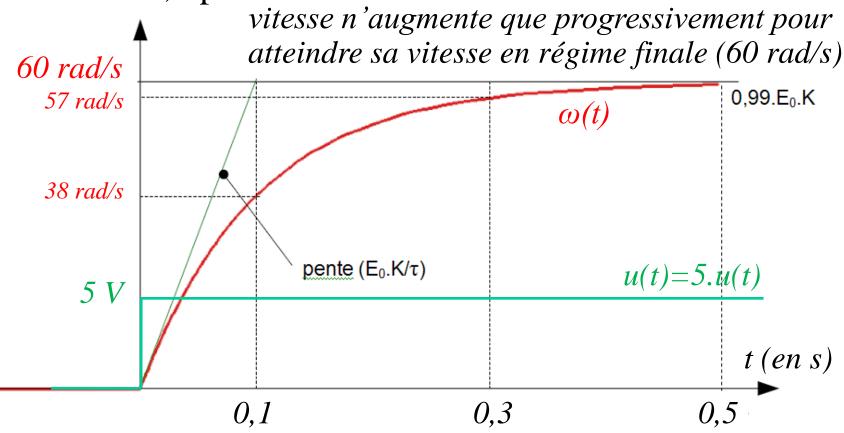
Réponse indicielle d'un 1er ordre :

Exemple: vitesse d'un moteur CC:

U(p) $H_m(p)$

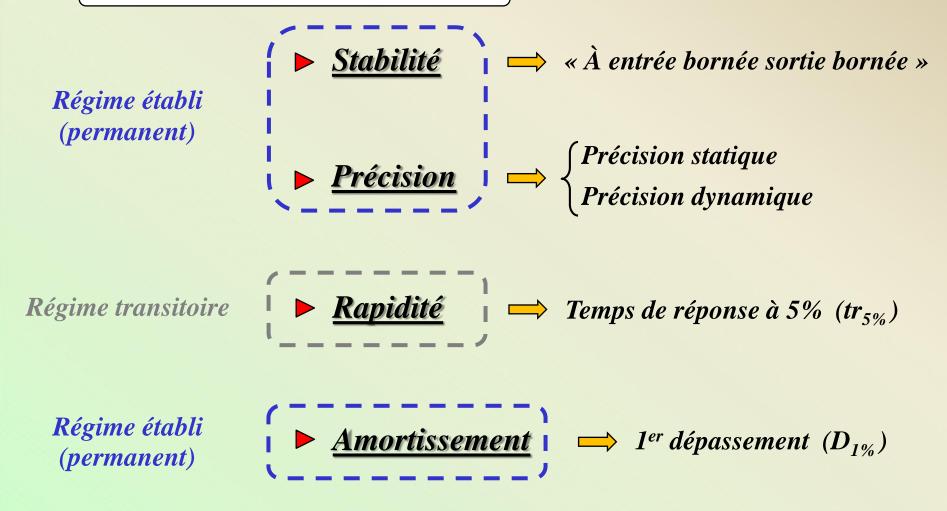
$$H(p) = \frac{12}{m} u_{SI}$$

 $\frac{12 \longleftarrow u_{SI}:}{1+0,1.p} \ \textit{Le moteur démarre immédiatement, mais sa}$



Critères de qualité d'un système asservi

Quatre critères de qualité sont étudiés dans le cadre de notre programme.

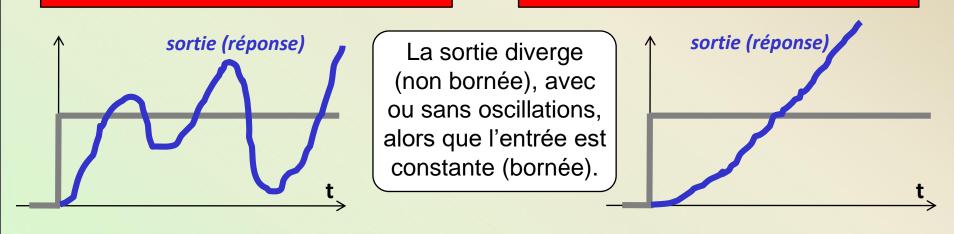


« À entrée bornée sortie bornée »

réponse à un échelon

Système instable avec oscillations

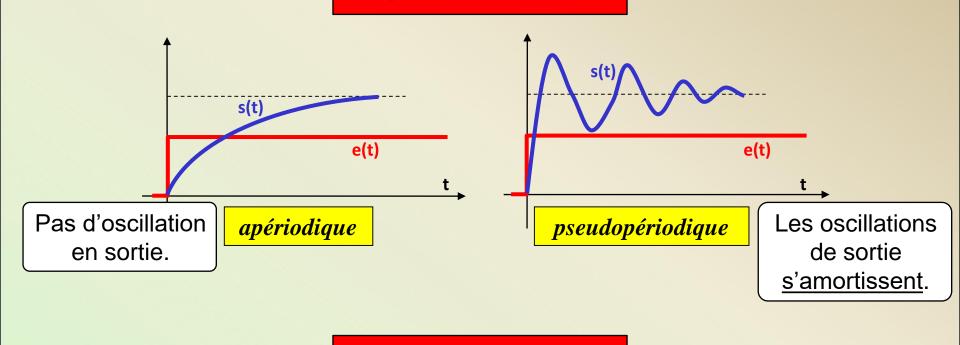
Système instable sans oscillations



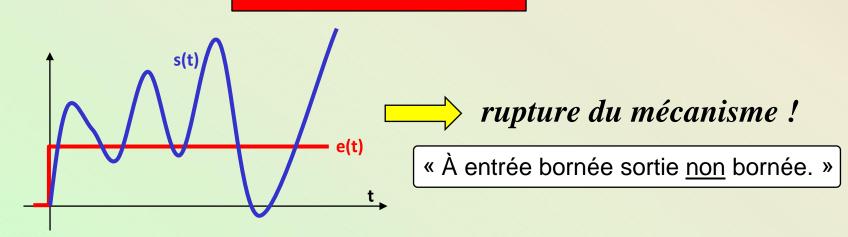
L'étude de la stabilité se fait à partir de la réponse fréquentielle (étude harmonique)

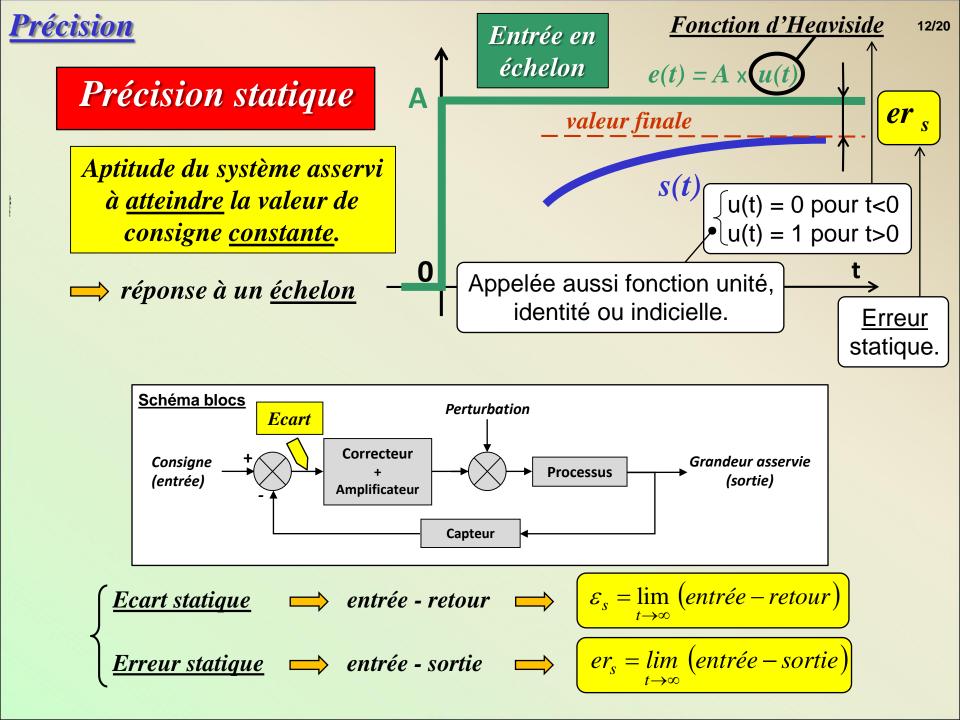
diagrammes de Bode

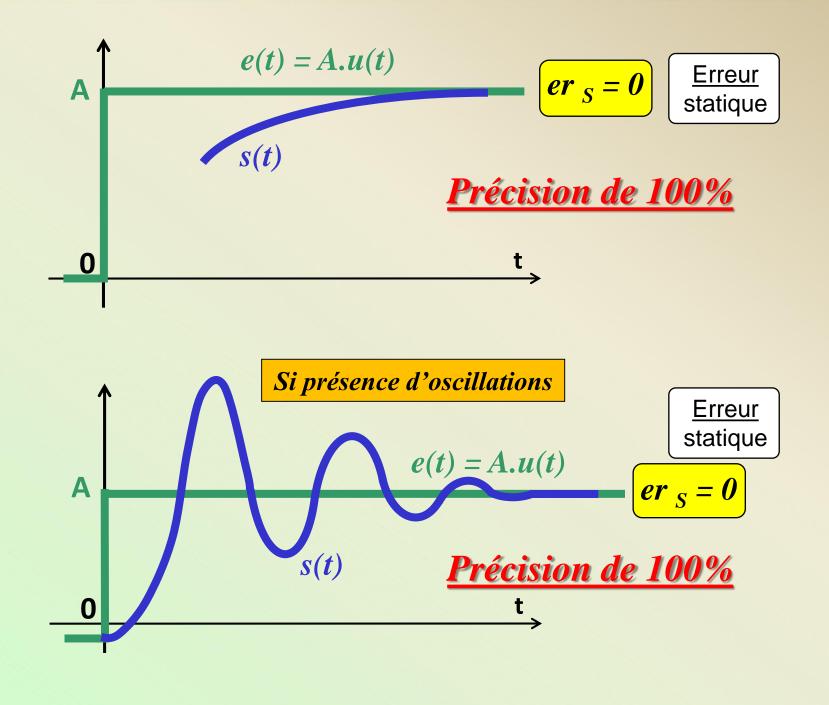
Système stable

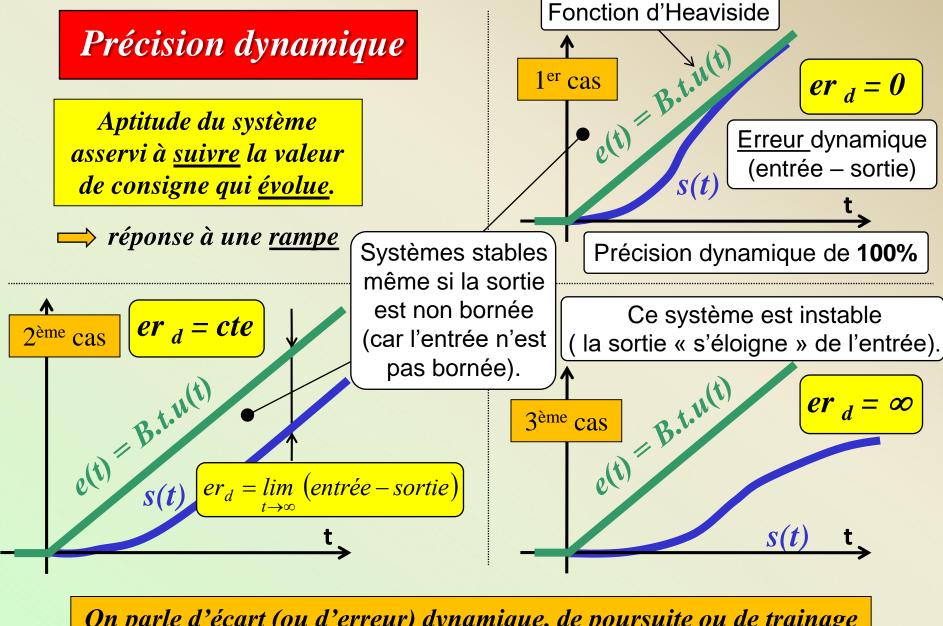


Système instable

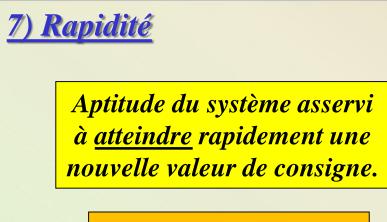




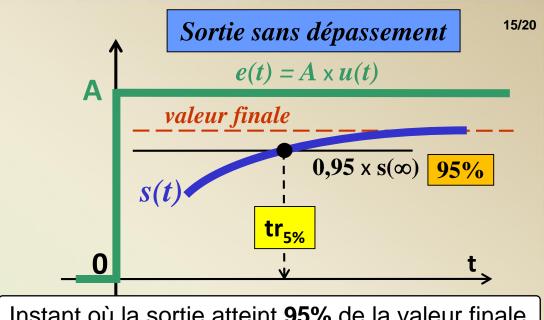




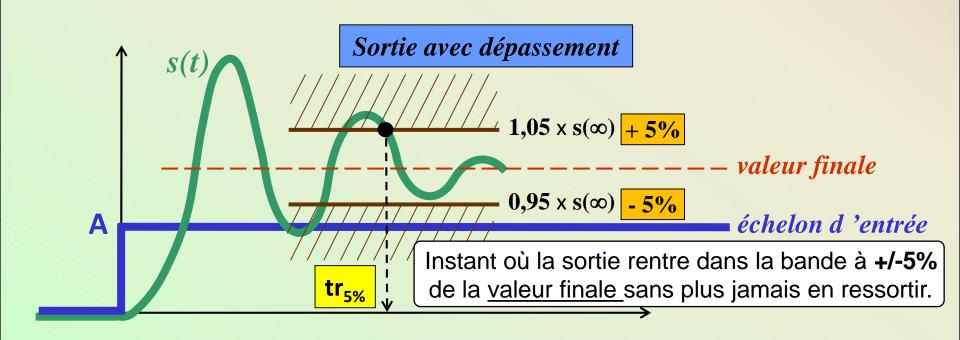
On parle d'écart (ou d'erreur) dynamique, de poursuite ou de trainage



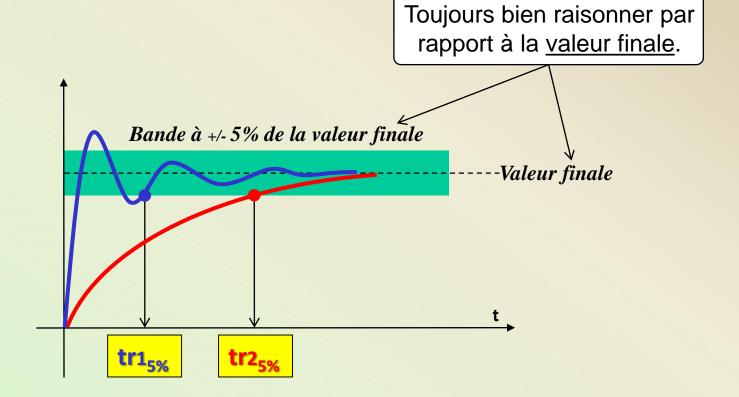
Temps de réponse à 5% (réponse à un échelon)



Instant où la sortie atteint 95% de la valeur finale.



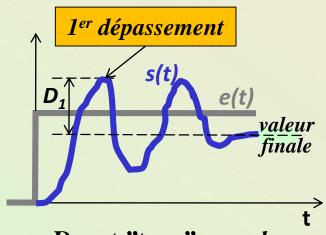
Synthèse:



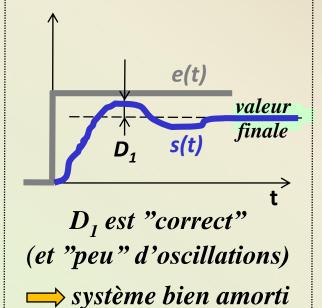
8) Amortissement

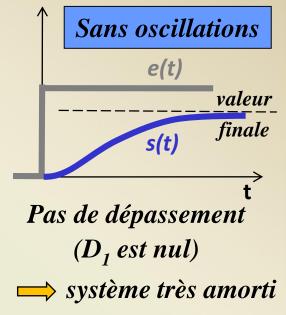
Aptitude du système asservi à avoir des oscillations peu prononcées.

\Rightarrow réponse à un échelon



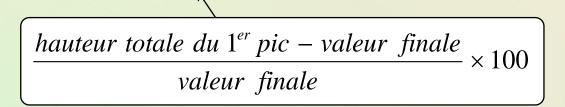
⇒ système mal amorti





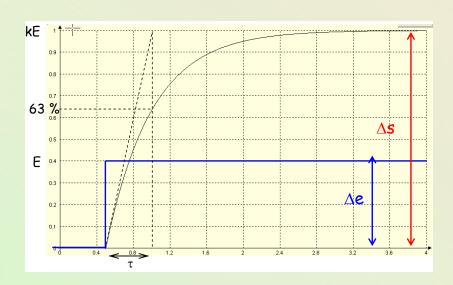
D₁ est généralement exprimé en pourcentage de la valeur finale

D1 représente la hauteur du 1^{er} dépassement (1^{er} pic) <u>par rapport</u> à la valeur finale et non pas la hauteur totale de ce 1^{er} pic.



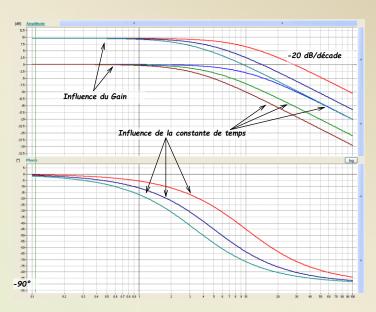
Modélisation des systèmes linéaires

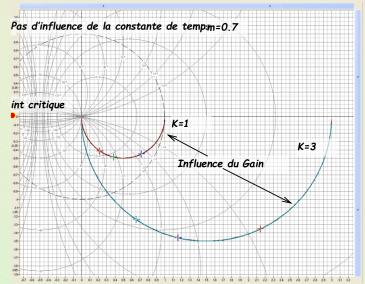
Modèle du premier ordre



$$\tau \frac{ds(t)}{dt} + s(t) = k \cdot e(t)$$

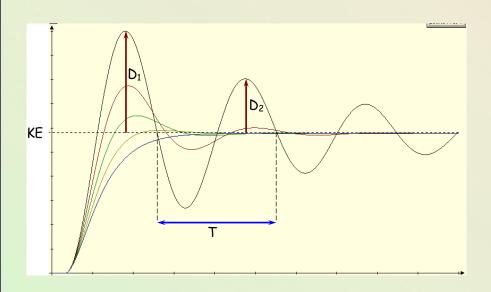
$$H(p) = \frac{k}{1 + \tau p}$$





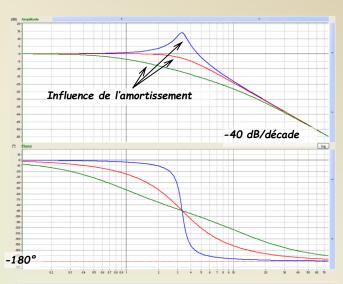
Modélisation des systèmes linéaires

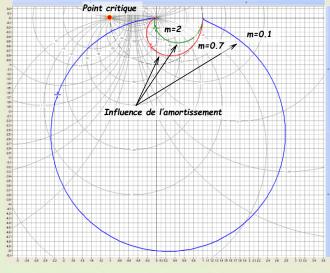
Modèle du second ordre



$$\frac{d^2y}{dt^2} + 2m\omega_0 \frac{dy}{dt} + \omega_0^2 y = g(t)$$

$$H(p) = k \frac{1}{1 + \frac{2mp}{\omega_0} + \frac{p^2}{\omega_0^2}}$$





Analyse temporelle d'un 2e ordre

Système du 2^e ordre (forme canonique):

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

avec : ω_0 : pulsation propre non amortie (unité : rad.s⁻¹);

ξ: (« xi ») coefficient d'amortissement (sans unité) (on emploie aussi les notations z ou m);

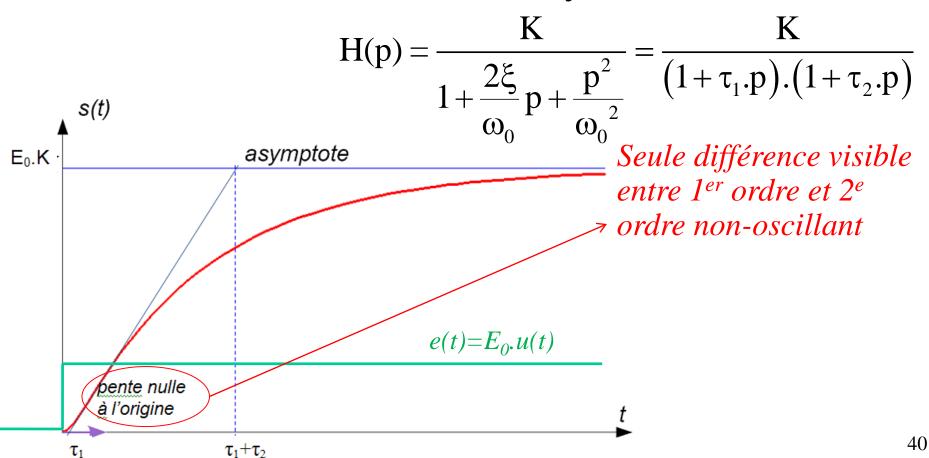
K : gain statique (unité : [s] / [e]).

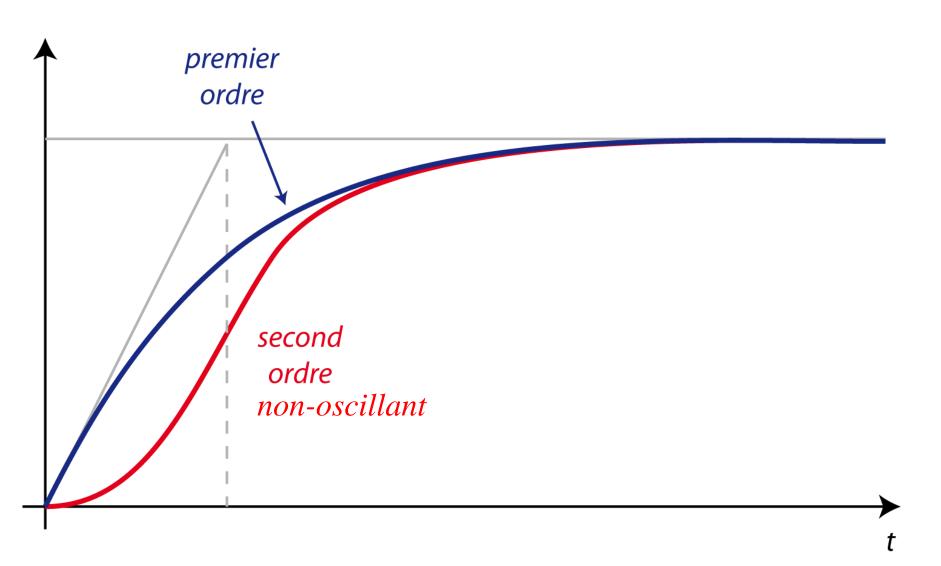
Analyse temporelle d'un 2e ordre

Réponse indicielle d'un 2^e ordre :

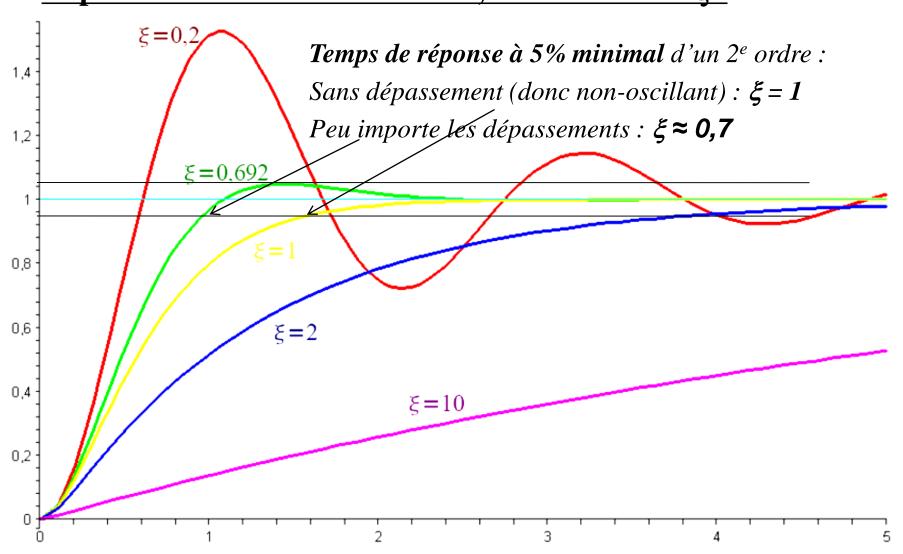
E(p) H(p) =
$$\frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

2^e ordre amorti (ou « non-oscillant ») : $\xi > 1$

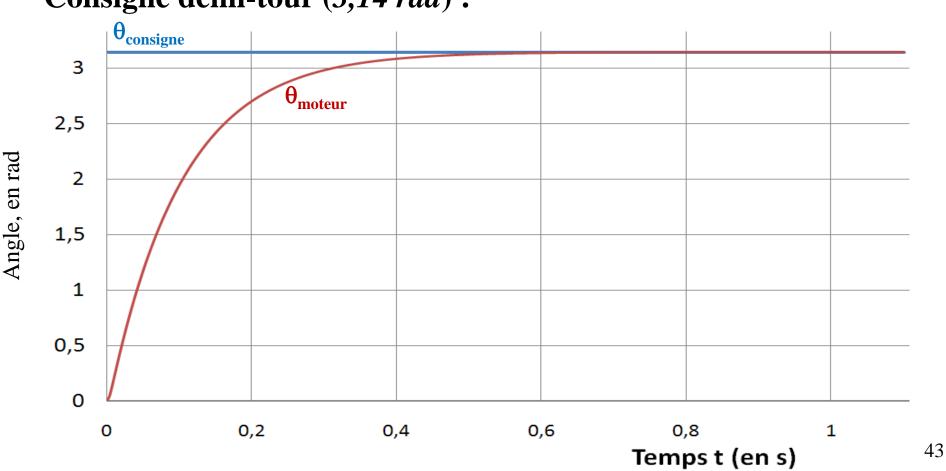




Réponse indicielle d'un 2^e ordre, en fonction de ξ:



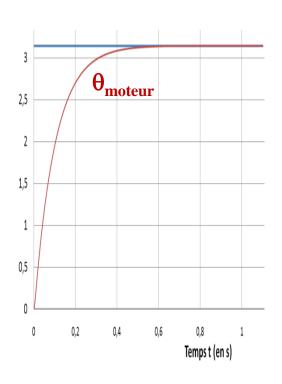
Exemple de réponses indicielles d'un 2^e ordre non-oscillant : Moteur CC asservi en position, avec correcteur proportionnel faible (lent, non-oscillant, ressemble à un 1^{er} ordre). Consigne demi-tour (3,14 rad) :



Exemple de réponses indicielles d'un 2e ordre :

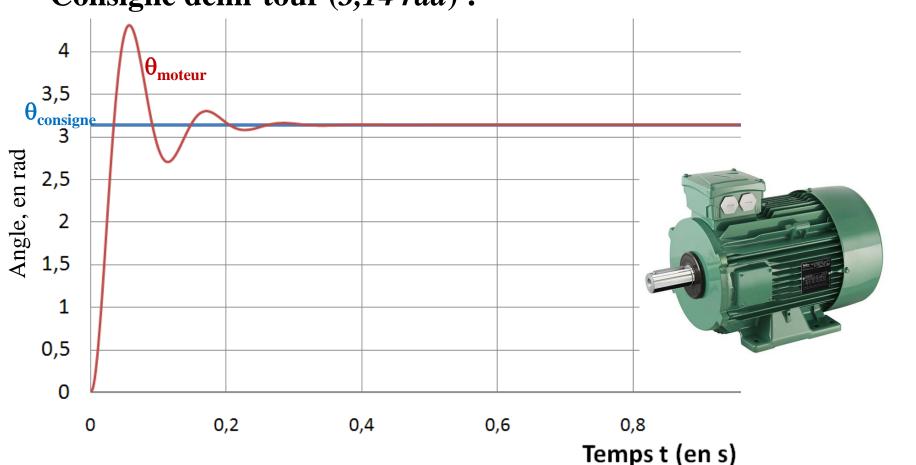
Moteur CC asservi en position, avec correcteur proportionnel faible (lent, non-oscillant, ressemble à un 1^{er} ordre).

Consigne demi-tour (3,14 rad):

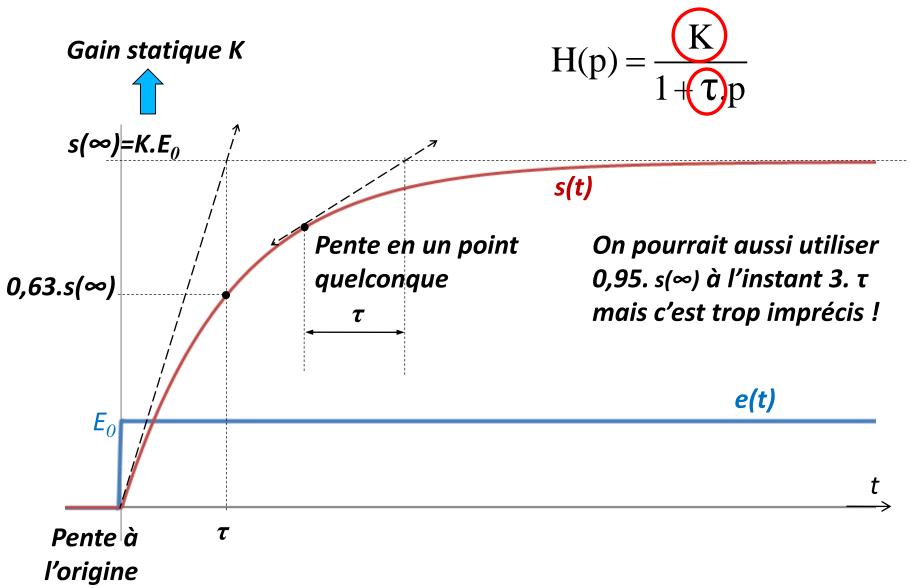


Analyse temporelle d'un 2e ordre

Exemple de réponses indicielles d'un 2^e ordre oscillant : Moteur CC asservi en position, avec correcteur proportionnel fort (rapide mais oscillant, ne ressemble pas à un 1^{er} ordre). Consigne demi-tour (3,14 rad) :



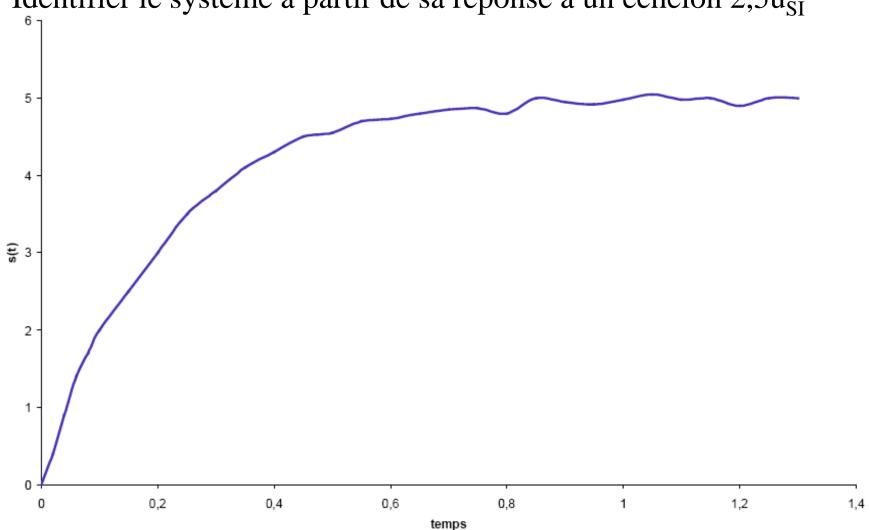
Identification à un 1er ordre



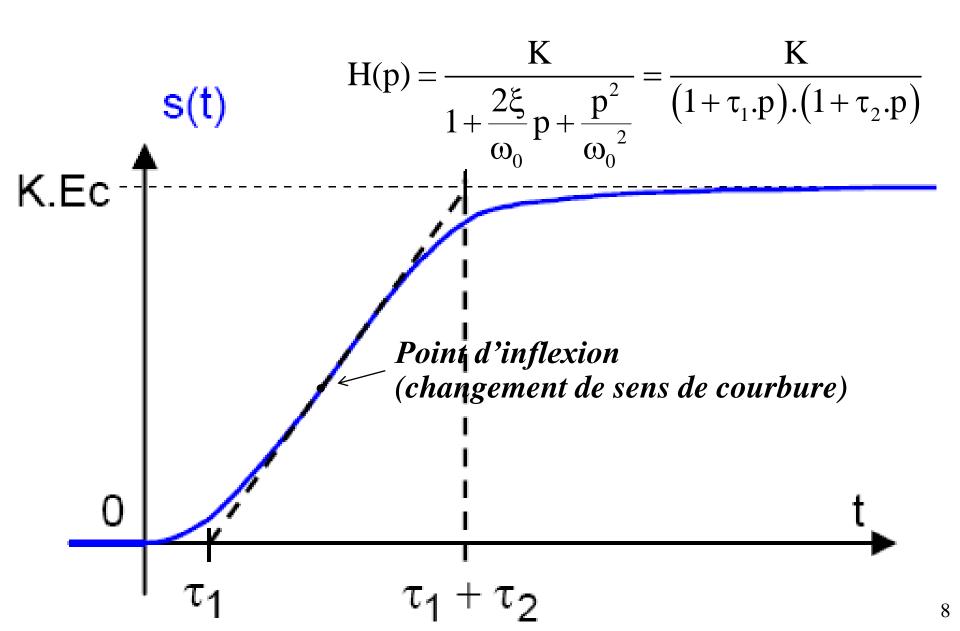
Identification à un 1er ordre

Exercice:

Identifier le système à partir de sa réponse à un échelon 2,5u_{SI}



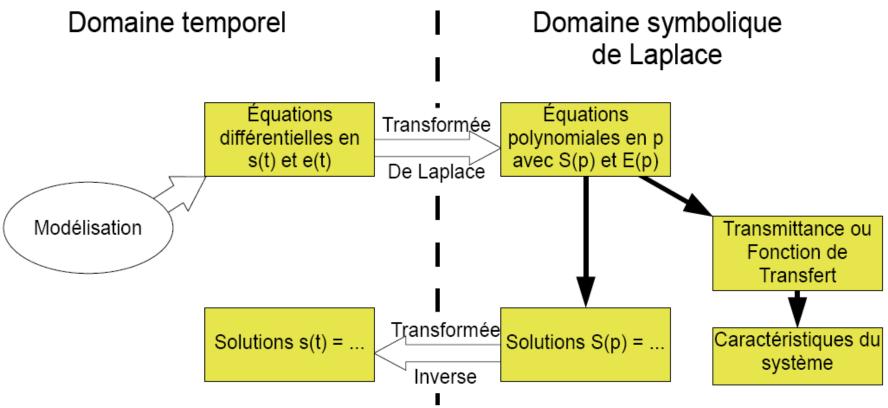
Identification à un 2^e ordre apériodique



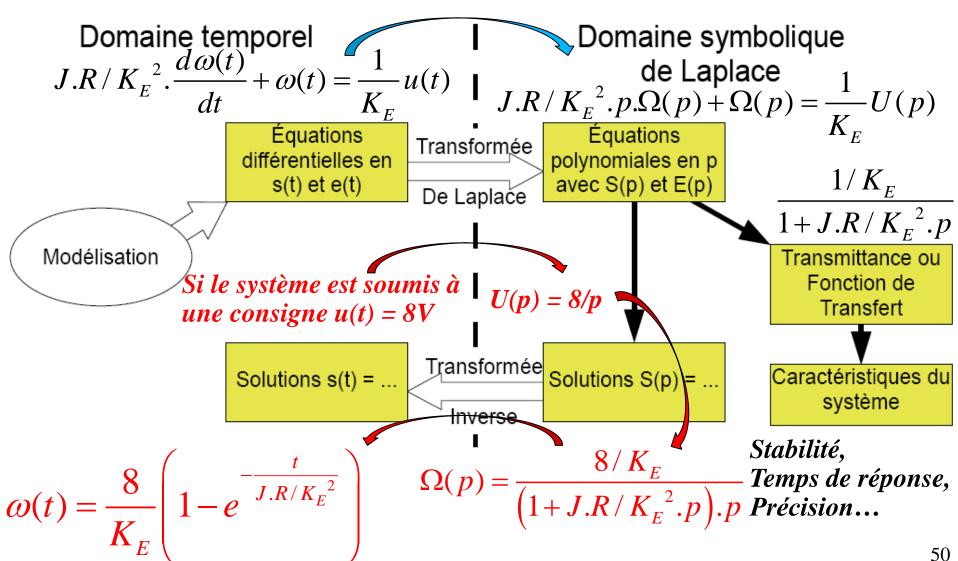
Objectif:

Supprimer les équations différentielles dans les calculs (simplifier les équations de modélisation).

Démarche:



Démarche (exemple d'un moteur CC) :



Transformée de Laplace :

$$f(t) \xrightarrow{L} F(p) = L[f(t)](p) = \int_{0^{-}}^{+\infty} f(t).e^{-p.t}.dt$$

avec **p** une **variable complexe**, dont l'unité est en s⁻¹ : p = a + j.b $avec j^2 = -1$

F(p) = L(f(t)): transformée de Laplace de la fonction f. $f(t) = L^{-1}(F(p))$: transformée inverse de la fonction F.

Propriétés importantes de la transformée de Laplace :

Propriétés	f(t)	$\mathbf{F}(\mathbf{p}) = \mathcal{L}(\mathbf{f}(\mathbf{t}))$
linéarité	$a.f_1(t) + b.f_2(t)$	$a.F_1(p) + b.F_2(p)$
dérivation	f'(t)	p.F(p)
intégration	$\int_{0^{-}}^{t} f(x).dx$	F(p) p
retard	$f(t-\tau).u(t-\tau)$	$e^{-\tau.p}.F(p)$

Théorème de la valeur initiale :

$$\lim_{t\to 0^+} (f(t)) = \lim_{p\to +\infty} (p.F(p))$$

=> Pente à l'origine :
$$\lim_{t\to 0^+} (f'(t)) = \lim_{p\to +\infty} (p^2.F(p))$$

Théorème de la valeur finale :

$$\lim_{t\to+\infty} (f(t)) = \lim_{p\to 0^+} (p.F(p))$$

=> Pente finale:
$$\lim_{t\to +\infty} (f'(t)) = \lim_{p\to 0^+} (p^2.F(p))$$

si la limite existe

Hypothèse : CI = 0 lors de la recherche FT.

Fonction de transfert (FT) d'un système :

La FT d'un système est la traduction dans le domaine de Laplace de l'équation différentielle liant l'entrée et la sortie du système.

$$a_{n} \cdot \frac{d^{n}s(t)}{dt^{n}} + a_{n-1} \cdot \frac{d^{n-1}s(t)}{dt^{n-1}} + \dots + a_{0} \cdot s(t) = b_{m} \cdot \frac{d^{m}e(t)}{dt^{m}} + b_{m-1} \cdot \frac{d^{m-1}e(t)}{dt^{m-1}} + \dots + b_{0} \cdot e(t)$$

$$Transformation dans Laplace$$

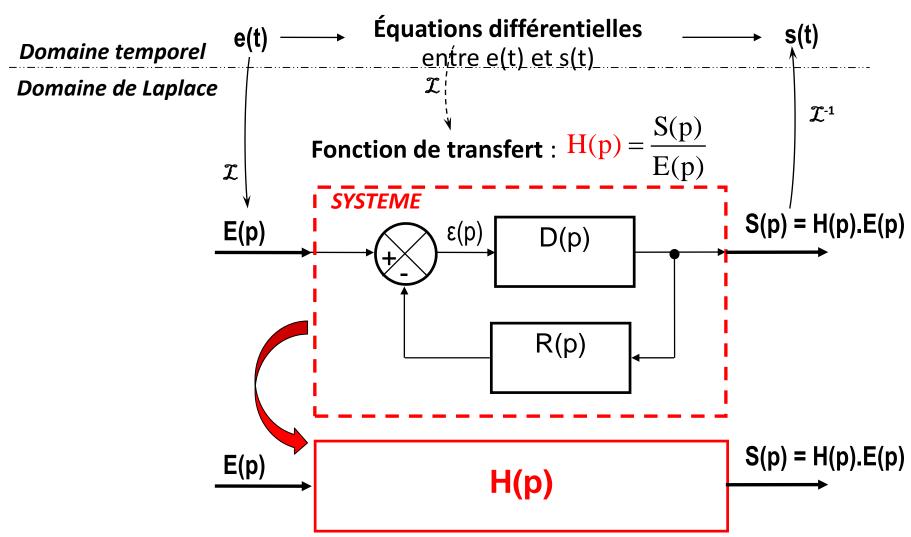
$$a_{n}.L \left[\frac{d^{n}s(t)}{dt^{n}}\right] + a_{n-1}.L \left[\frac{d^{n-1}s(t)}{dt^{n-1}}\right] + ... + a_{0}.L \left[s(t)\right] = b_{m}.L \left[\frac{d^{m}e(t)}{dt^{m}}\right] + b_{m-1}.L \left[\frac{d^{m-1}e(t)}{dt^{m-1}}\right] + ... + b_{0}.L \left[e(t)\right]$$

$$a_n.p^n.S(p) + a_{n-1}.p^{n-1}.S(p) + ... + a_0.S(p) = b_m.p^m.E(p) + b_{m-1}.p^{m-1}.E(p) + ... + b_0.E(p)$$

$$S(p).[a_0 + a_1.p + ... + a_n.p^n] = E(p).[b_0 + b_1.p + ... + b_m.p^m]$$

$$S(p) = E(p) \underbrace{\begin{bmatrix} b_0 + b_1 \cdot p + \dots + b_m \cdot p^m \end{bmatrix}}_{\begin{bmatrix} a_0 + a_1 \cdot p + \dots + a_n \cdot p^n \end{bmatrix}} \underbrace{\begin{aligned} & \textbf{Fonction de} \\ & \textbf{transfert} \end{aligned}}_{} \mathbf{H}(p) = \underbrace{\begin{aligned} & S(p) \\ & E(p) \end{aligned}}_{}$$

Fonction de transfert (FT) d'un système :



Forme canonique d'une Fonction de transfert :

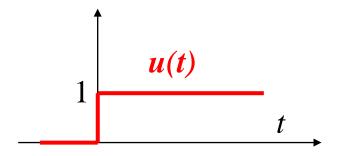
$$H(p) = K \underbrace{\frac{1}{p^{\alpha} \left(1 + a_{1'} \cdot p + \dots + b_{m'} \cdot p^{m'}\right)}^{1 + a_{1'} \cdot p + \dots + a_{n'} \cdot p^{m'}}$$

Ardre du système = α + n' : degré du dénominateur ;

classe du système ;gain statique du système.

Polynome en p

Échelon unitaire, ou fonction d'Heaviside:

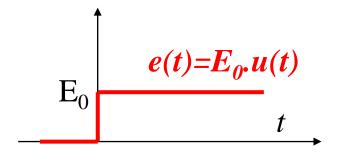


Échelon unitaire défini par : u(t) = 1 pour $t \ge 0$; u(t) = 0 sinon.

Tous les phénomènes physiques que l'on étudiera commenceront à t=0, et seront nuls avant (grâce éventuellement à un changement d'origine). Toutes les fonctions seront donc multipliées par u(t)

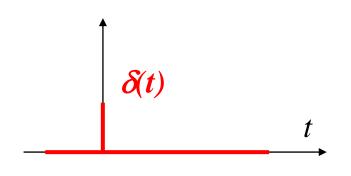
$$L[u(t)] = \frac{1}{p}$$

Échelon (ou « constante »):



$$L[E_0.u(t)] = \frac{E_0}{p}$$

Impulsion (de Dirac):



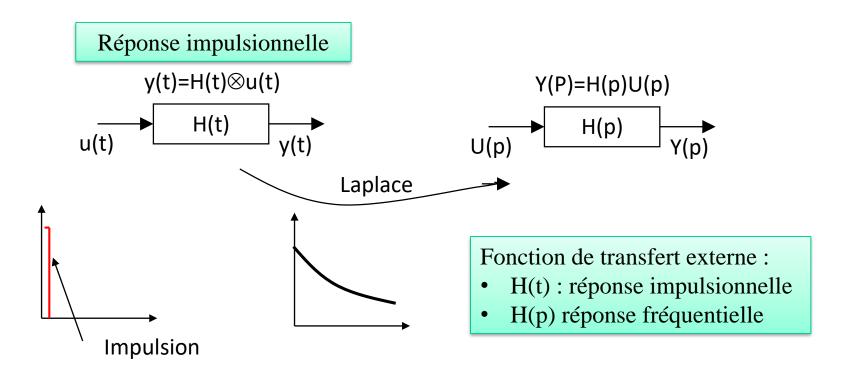
Impulsion de Dirac définie par : $\delta(0) = +\infty ;$ $\delta(t) = 0 \quad \text{pour } t \neq 0 ;$ $\int_{-\infty}^{+\infty} \delta(t) . dt = 1$

$$L[\delta(t)] = 1$$

L'impulsion de Dirac est la dérivée de l'échelon

Représentation Externe

• La fonction de transfert d'un système LTI est de la forme :



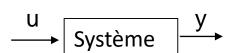
Représentation Externe

• La fonction de transfert d'un système LTI est de la forme :

$$\frac{Y(p)}{U(p)} = G(p) = \frac{B(p)}{A(p)} = \frac{b_0 + b_1 \cdot p + \dots + b_m \cdot p^m}{a_0 + a_1 \cdot p + \dots + a_n \cdot p^n}$$

Fonction de transfert externe

- Vocabulaire :
 - G(p) est la fonction de transfert du Système
 - − L'ordre du système est *n*
 - Les racines de B(p) sont les Zéros du Système
 - Les racines de A(p) sont les Pôles du Système
 - Si *m*< *n* le système est Strictement Propre
 - Si *m*=*n* le système est Propre
 - Si *m>n* le système est Impropre



Représentation Externe

• Le système :

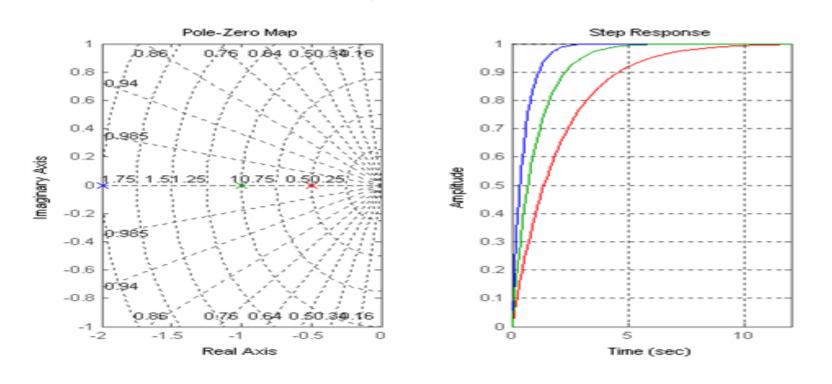
$$\frac{Y(p)}{U(p)} = G(p) = \frac{B(p)}{A(p)} = \frac{b_0 + b_1 p}{a_0 + a_1 \cdot p}$$

- Est d'ordre 1
- Est strictement propre si b₁=0
- Est propre si b₁≠0
- − Le pôle du système est p=-a0/a1
- Le zéro du système est z=-b0/b1

Etude d'un système du premier ordre stable

Etudions la réponse à un échelon d'un système du premier ordre de la forme:

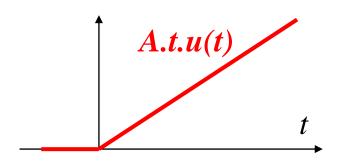
$$G(p) = \frac{1}{1 + \frac{p}{p_i}} \quad pour \quad p_i = \{0.5, 0.7, 2\}$$



On observer que:

- -Tous les pôles du système sont négatifs.
- -Le système est stable (dans le sens entrée bornée / sortie bornée).
- -Le système est d'autant plus rapide que le pole est grand en valeur absolue.

Rampe:



Droite de pente A

$$L[A.t.u(t)] = \frac{A}{p^2}$$

La rampe est la primitive de l'échelon

Décomposition en éléments simples :

Exemple:

pôles réels

pôles complexes

$$\frac{p^2 + 3.p + 5}{p.(p+1)^2(p^2 + 2p + 2)} =$$

Décomposition en éléments simples :

Exemple:

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

Pour A: multiplier l'équation par p puis faire p = 0.

$$\frac{p \cdot \frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = p \cdot \left(\frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}\right)$$

$$\frac{p^2 + 3 \cdot p + 5}{(p+1)^2 (p^2 + 2p + 2)} = A + p \cdot \left(\frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}\right)$$

$$\frac{5}{2} = A$$

Décomposition en éléments simples :

Exemple:

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

Pour C: Multiplier par $(p+1)^2$ puis p = -1.

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \left(p+1\right)^2 \cdot \left(\frac{A}{p} + \frac{B}{p+1} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}\right) + C$$

$$\frac{\left(-1\right)^2 + 3 \cdot \left(-1\right) + 5}{\left(-1\right) \cdot \left(\left(-1\right)^2 + 2\left(-1\right) + 2\right)} = C$$

$$-3 = C$$

Décomposition en éléments simples :

Exemple:

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

Pour D et E: Multiplier par p^2+2p+2 puis p = une des racines complexes et identification partie réelle et imaginaire.

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2} = \left(\frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2}\right) \cdot \left(\frac{p^2 + 2p + 2}{p+2}\right) + D \cdot p + E$$
Racine de $p^2 + 2p + 2 : \Delta = 2^2 - 4 * 2 = -4 = >$ Une racine: $p = \frac{-2 \pm i \cdot 2}{2} = -1 + i$

$$\frac{\left(-1+i\right)^{2}+3.\left(-1+i\right)+5}{\left(-1+i\right).\left(i\right)^{2}}=D.\left(-1+i\right)+E \qquad =\frac{\left(2+i\right).\left(1+i\right)}{\left(1-i\right).\left(1+i\right)}$$

$$\frac{1+3.i}{2} = -D + E + D.i D = \frac{3}{2} E = \frac{1}{2} + D = 2$$

Décomposition en éléments simples :

Exemple:

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

Pour B: Multiplier par p puis faire $p \rightarrow +\infty$.

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A \cdot p}{p} + \frac{B \cdot p}{p+1} + \frac{C \cdot p}{(p+1)^2} + \frac{D \cdot p^2 + E \cdot p}{p^2 + 2 \cdot p + 2}$$

$$p \to +\infty: \qquad \frac{p^2}{p^2 \cdot p^2} = \frac{A \cdot p}{p} + \frac{B \cdot p}{p} + \frac{C \cdot p}{p^2} + \frac{D \cdot p^2}{p^2}$$

$$0 = A + B + 0 + D$$
 $B = -4$

Décomposition en éléments simples :

Exemple:

$$\frac{p^2 + 3 \cdot p + 5}{p \cdot (p+1)^2 (p^2 + 2p + 2)} = \frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

On a donc déterminé A, B, C, D et E.

Cherchons maintenant les transformées inverses de chaque élément simple!

Transformées inverses de chaque élément simple :

Exemple:
$$\frac{A}{p} + \frac{B}{p+1} + \frac{C}{\left(p+1\right)^2} + \frac{D.p+E}{p^2+2.p+2}$$

$$\frac{A}{p} \xrightarrow{\mathcal{L}^{-1}} A \stackrel{}{\smile}$$

$$\frac{B}{p+1} \xrightarrow{\mathcal{L}^{-1}} B.e^{-t} \longleftarrow$$

$$\frac{C}{(p+1)^2} \xrightarrow{\mathcal{L}^{-1}} C.t.e^{-t}$$

ANNEXE A1 : TABLEAU DES TRANSFORMÉ LAPLACE DES FONCTIONS USUELLES

Impulsion de Dirac : $\delta(t)$ Échelon (fonction constante) : $u(t)$ Rampe : $t.u(t)$	$\mathbf{F}(\mathbf{p}) = \mathcal{L}(\mathbf{f}(\mathbf{t}))$ $\frac{1}{p}$ $\frac{1}{p^2}$
Ramne: tu(t)	$\frac{1}{p^2}$
Rampe: t.u(t)	
$t^{n-1}.u(t)$	$\frac{(n-1)!}{p^n}$
$e^{-a \cdot t}.u(t)$	$\left(\frac{1}{p+a}\right)$
$t.e^{-at}.u(t)$	$\frac{1}{(p+a)^2}$
$t^{n-1}.e^{-a.t}.u(t)$	$\frac{(n-1)!}{(p+a)^n}$
$\sin(\omega.t).u(t)$	$\frac{\omega}{p^2 + \omega^2}$
$\cos(\omega t).u(t)$	$\frac{p}{p^2 + \omega^2}$
$e^{-a.t}.\sin(\omega.t).u(t)$	$\frac{\omega}{(p+a)^2+\omega^2}$
$e^{-a \cdot t}.cos(\omega.t).u(t)$	$\frac{p+a}{(p+a)^2+\omega^2}$
$sh(\omega.t).u(t)$	$\frac{\omega}{p^2 - \omega^2}$
$ch(\omega.t).u(t)$	$\frac{p}{p^2 - \omega^2}$

Transformée inverse de Laplace

Transformées inverses de chaque élément simple :

Exemple:
$$\frac{A}{p} + \frac{B}{p+1} + \frac{C}{(p+1)^2} + \frac{D \cdot p + E}{p^2 + 2 \cdot p + 2}$$

$$\frac{D \cdot p + E}{p^2 + 2 \cdot p + 2} = \frac{D \cdot (p+1)}{(p+1)^2 + 1} + \frac{-D + E}{(p+1)^2 + 1}$$

$$\frac{D \cdot (p+1)}{(p+1)^2 + 1} \xrightarrow{P^{-1}} D \cdot e^{-t} \cdot \cos(t)$$

$$\frac{-D + E}{(p+1)^2 + 1} \xrightarrow{P^{-1}} (-D + E) \cdot e^{-t} \cdot \sin(t)$$

ANNEXE A1 : TABLEAU DES TRANSFORMÉ LAPLACE DES FONCTIONS USUELLES

	$f(t) = \mathcal{L}^{-1}(F(p))$	$\mathbf{F}(\mathbf{p}) = \mathcal{L}(\mathbf{f}(\mathbf{t}))$
	Impulsion de Dirac : $\delta(t)$	1
	Échelon (fonction constante) : $u(t)$	1 p
1	Rampe: t.u(t)	$\frac{1}{p^2}$
	t ⁿ⁻¹ .u(t)	$\frac{(n-1)!}{p^n}$
1	$e^{-a.t}.u(t)$	$\frac{1}{p+a}$
1	$t.e^{-a.t}.u(t)$	$\frac{1}{(p+a)^2}$
	$t^{n-1}e^{-a\cdot t}.u(t)$	$\frac{(n-1)!}{(p+a)^n}$
	$\sin(\omega.t).u(t)$	$\frac{\omega}{p^2 + \omega^2}$
	$\cos(\omega t)u(t)$	$\frac{p}{p^2 + \omega^2}$
	$e^{-a \cdot t} \cdot \sin(\omega \cdot t) \cdot u(t)$	$\frac{\omega}{(p+a)^2+\omega^2}$
)	$e^{-a.t}.cos\big(\omega.t\big).u(t)$	$\frac{p+a}{(p+a)^2+\omega^2}$
	$sh\big(\omega.t\big).u(t)$	$\frac{\omega}{p^2 - \omega^2}$
	$ch(\omega.t).u(t)$	$\frac{p}{p^2 - \omega^2}$

Transformée inverse de Laplace

Transformées inverses de chaque élément simple :

Exemple: Au final:

$$\frac{p^{2}+3.p+5}{p.(p+1)^{2}(p^{2}+2p+2)}$$

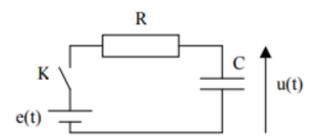
$$\downarrow \mathcal{L}^{-1}$$

$$(A + B.e^{-t} + C.t.e^{-t} + D.e^{-t}.\cos(t) + (-D + E).e^{-t}.\sin(t)).u(t)$$

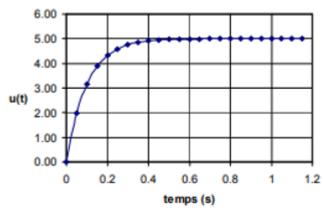
$$avec A = 5/2, B = -4, C = -3, D = 3/2, E = 2$$

Réponse à un échelon système 1er ordre

- On considère un circuit électrique RC, dont le condensateur est déchargé. A t=0 on ferme l'intérupteur
 - L'allure de la tension peut être déterminée
 - \checkmark e(t)=Ri(t) + u(t) où i(t)=Cdu(t)/dt
 - \checkmark e(t)=RCdu(t)/dt + u(t) avec e(t)=5V (cte) => E(p)=5/p



- par la transformée de Laplace on a
 - \checkmark E(p)=RCpU(p)+U(p)
 - $V(p) = E(p) \cdot \frac{1}{(1 + RC.p)} = \frac{5}{p \cdot (1 + RC.p)}$
- par la transformée de Laplace inverse on obtient :
 - $u(t) = 5 \left(1 e^{-\frac{t}{RC}} \right)$



☐ On considère la fonction de transfert

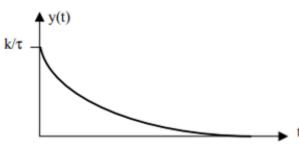
$$X(p) \longrightarrow G(p) \longrightarrow Y(p)$$

- k est le gain statique du système
- τ est la constante de temps > 0, elle caractérise la vitesse d'évolution de la sortie y(t)
- ✓ Réponse impulsionnelle : entrée de type Dirac, $x(t)=\delta(t)$
 - Donne d'après Laplace la relation

$$Y(p) = X(p).G(p) = 1 \times \frac{k}{1 + \tau.p} = \frac{k}{1 + \tau.p}$$

et le Laplacien inverse donne la réponse temporelle suivante :

$$s(t) = \frac{k}{\tau} \cdot e^{-\frac{t}{\tau}}$$



✓ Réponse indicielle: x(t) = u(t) = 1

$$X(p) \longrightarrow G(p) \longrightarrow Y(p)$$

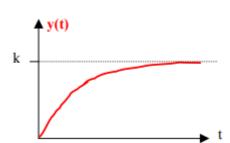
$$G(p) = \frac{Y(p)}{X(p)} = \frac{k}{1 + \tau \cdot p}$$

On a d'après Laplace la relation

$$Y(p) = X(p).G(p) = \frac{1}{p} \times \frac{k}{1 + \tau.p} = \frac{k}{p.(1 + \tau.p)}$$

et le Laplacien inverse donne la réponse temporelle suivante :

$$y(t) = k \left(1 - e^{-\frac{t}{\tau}} \right)$$



t =	y(t) =		
τ	0,63.k] [Temps de réponse à 5% :
$3 \times \tau$	0,95.k	←	Tr $_{5\%} = 3.\tau$
$5 \times \tau$	0,99.k] l	11 5% - 3.0

✓ Réponse en vitesse : $x(t) = t \times u(t) = 1$

$$X(p) \longrightarrow G(p) \longrightarrow Y(p)$$

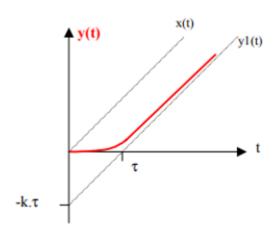
$$G(p) = \frac{Y(p)}{X(p)} = \frac{k}{1 + \tau \cdot p}$$

On a d'après Laplace la relation

$$Y(p) = X(p).G(p) = \frac{1}{p^2} \times \frac{k}{1 + \tau.p} = \frac{k}{p^2.(1 + \tau.p)}$$

et le Laplacien inverse donne la réponse temporelle suivante :

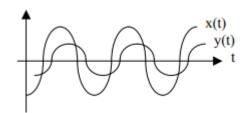
$$y(t) = k \left(t - \tau + \tau . e^{-\frac{t}{\tau}} \right)$$



✓ Réponse harmonique : x(t) = cos(w.t)



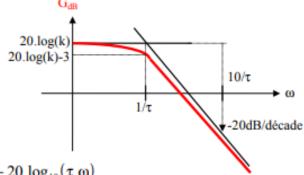
$$G(p) = \frac{Y(p)}{X(p)} = \frac{k}{1 + \tau \cdot p}$$



Étude asymptotique du gain

L'expression précédente se met sous la forme:

$$G_{dB} = 20.\log_{10}(k) - 10.\log_{10}(1 + \tau^2.\omega^2)$$



$$1^{er}$$
 cas: si $\omega \rightarrow 0$ alors $G_{dB} \approx 20.\log_{10}(k)$

$$2^{eme}$$
 cas: si $\omega \rightarrow \infty$ alors $G_{dB} = 20.\log_{10}(k) - 20.\log_{10}(\tau.\omega)$

$$3^{eme}$$
 cas: si $\omega = 1/\tau$ alors $G_{dB} = 20.\log_{10}(k) - 3$

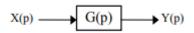
$$4^{\text{eme}}$$
 cas: si $\omega = 10/\tau$ alors $G_{dB} = 20.\log_{10}(k) - 20$

Fréquence de Coupure : $\omega = 1 / \tau$

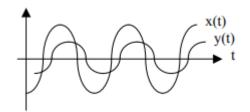
Étude théorique de la phase

$$\varphi = Arg(G(j.\omega))$$
 avec $G(j.\omega) = \frac{k}{1 + j.\tau.\omega}$

Réponse harmonique : x(t) = cos(w.t)



$$G(p) = \frac{Y(p)}{X(p)} = \frac{k}{1 + \tau \cdot p}$$



Étude asymptotique de la phase

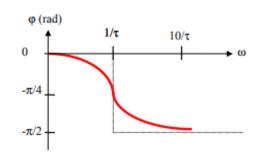
1er cas:

si $\omega \rightarrow 0$ alors $\phi \rightarrow 0$

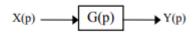
si $\omega \to \infty$ alors $\phi \to -\frac{\pi}{2}$

3eme cas:

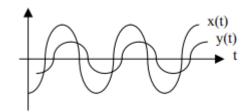
si $\omega = 1/\tau$ alors $\varphi = -\frac{\pi}{4}$



Réponse harmonique : x(t) = cos(w.t)



$$G(p) = \frac{Y(p)}{X(p)} = \frac{k}{1 + \tau \cdot p}$$



7. Lieu de Nyquist

$$G(j.\omega) = \frac{k}{1+j.\tau.\omega} = \frac{k}{1+j.\tau.\omega} \times \frac{1-j.\tau.\omega}{1-j.\tau.\omega}$$

on a alors:

$$X = \text{Re}[G(j.\omega)] = \frac{k}{1 + \tau^2.\omega^2}$$

$$Y = \text{Im}[G(j.\omega)] = \frac{-k.\tau.\omega}{1 + \tau^2.\omega^2}$$

$$Y = Im[G(j.\omega)] = \frac{-k.\tau.\omega}{1 + \tau^2.\omega^2}$$

si
$$\omega \to 0$$
 alors $X = k$ et $Y = 0$

si
$$\omega \to \infty$$
 alors $X = 0^+$ et $Y = 0^-$

on a:
$$\frac{Y}{X} = -\omega.\tau$$
 $d'où: X = \frac{k}{1 + \frac{Y^2}{X^2}} = \frac{k.X^2}{X^2 + Y^2}$

L'équation devient alors: $X^2 + Y^2 = k \cdot X$ ou encore: $\left(X - \frac{k}{2}\right)^2 + Y^2 = \left(\frac{k}{2}\right)^2$

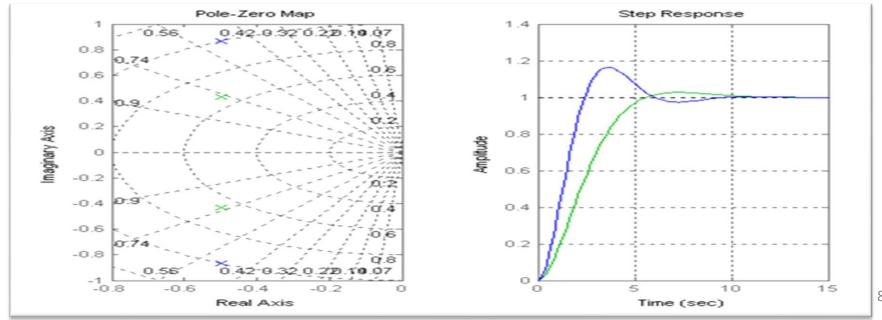
$$\left(X - \frac{k}{2}\right)^2 + Y^2 = \left(\frac{k}{2}\right)^2$$

▶ Re(G)

C'est l'équation d'un cercle de rayon k/2 centré en (k/2;0). Le lieu de Nyquist correspondant est donc le demi-cercle inférieur (car ω est positif).

Réponse à un échelon système 2ème ordre

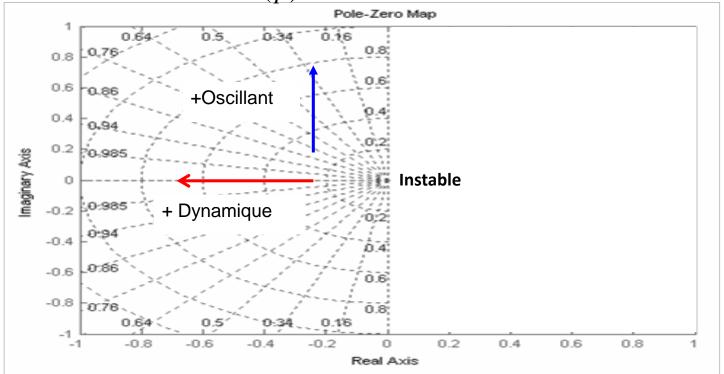
- $\Box \text{ Système du second ordre : } G(p) = \frac{c}{\left(p^2 + p + c\right)}$
 - Cas 1 pour c=1 \rightarrow Pôles -0.5 ± 0.866i
 - Cas 2 pour $c=0.4375 \rightarrow P\hat{o}les -0.5 \pm 0.433i$



Domaine de stabilité

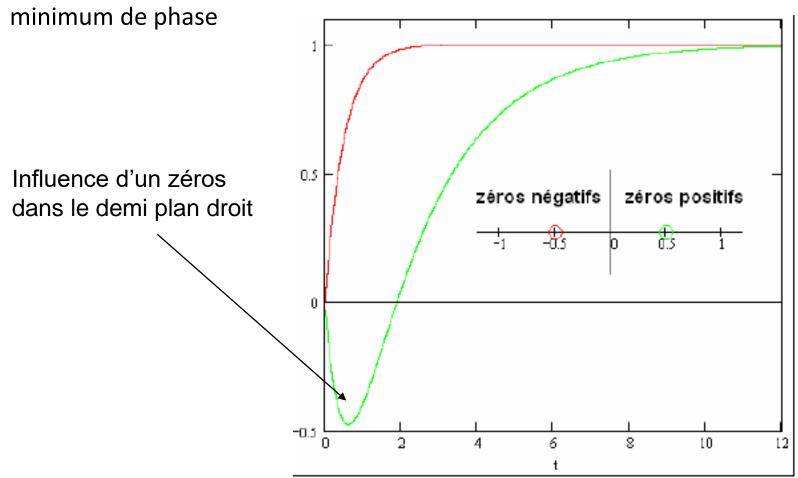
☐ Un système est stable si et seulement si les pôles de la fonction de transfert sont à partie réelle strictement négative :

 $G(p) = \frac{B(p)}{A(p)}$ est stable $\Leftrightarrow \{ \forall p / A(p) = 0 \rightarrow \Re(p) < 0 \}$



Influence des zéros

☐ Un système qui a un zéro à partie réelle positive est un système à non



Matlab: Création du système

☐ Fonction: tf

$$G(s) = \frac{1}{\left(s^2 + s + 1\right)}$$

Etude temporelle d'un 2^e ordre

Système du 2^e ordre (forme canonique):

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

avec : ω_0 : pulsation propre non amortie (unité : rad.s⁻¹);

 ξ : (« xi ») coefficient d'amortissement (sans unité) (on emploie aussi les notations z ou m) ;

K : gain statique (unité : [s] / [e]).

Réponse indicielle : 2ème ordre

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{{\omega_0}^2}}$$

Entrée : $e(t) = E_0 \cdot u(t)$

On applique la transformée de Laplace :

$$S(p) = H(p) \cdot E(p) = \frac{K}{\frac{1}{\omega_0^2} \cdot p^2 + \frac{2 \cdot \xi}{\omega_0} \cdot p + 1} \cdot \frac{E_0}{p}$$

Cette expression n'est pas disponible dans le tableau des transformées de Laplace. La transformée de Laplace inverse nécessite au préalable une décomposition en éléments simples.

$$\left(\frac{1}{\omega_0^2} \cdot p^2 + \frac{2 \cdot \xi}{\omega_0} \cdot p + 1\right) \cdot p = 0$$

On trouve p=0 ainsi que les racines du polynôme qui dépendent du signe $\Delta = 4 \cdot \frac{(\xi^2 - 1)}{\omega_0^2}$

On distingue les trois cas :

- Si l'amortissement est faible (ξ <1), alors Δ <0 et il y a deux racines imaginaires distinctes
- Si l'amortissement est critique (ξ =1), alors Δ =0 et il y a une racine réelle double
- Si l'amortissement est important (ξ >1), alors Δ >0 et il y a deux racines réelles distinctes

Régime apériodique

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{{\omega_0}^2}}$$

Lorsque l'amortissement est fort, $\xi > 1$, la réponse est amortie (régime apériodique).

Dans le cas où ξ >1, le dénominateur possède deux racines réelles :

$$p = -\xi \cdot \omega_0 \pm \omega_0 \cdot \sqrt{\xi^2 - 1}$$

Sachant que ξ et ω_0 sont positifs, on vérifie que les deux pôles sont à partie réelle négative ce qui assure un comportement stable. La sortie peut s'écrire sous forme factorisée :

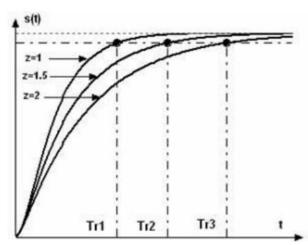
$$S(p) = \frac{K \cdot E_0 \cdot \omega_0}{(p - p_1) \cdot (p - p_2) \cdot p}$$

La décomposition en éléments simples s'écrit sous la forme :

$$S(p) = \frac{\alpha}{p} + \frac{\beta}{(p - p_1)} + \frac{\gamma}{(p - p_2)}$$

La transformée de Laplace inverse s'obtient à l'aide du tableau des transformées de Laplace :

$$s(t) = K \cdot E_0 \cdot (1 - \frac{\omega_0}{2 \cdot \xi \cdot \sqrt{\xi^2 - 1}} \cdot (\frac{e^{p_2 \cdot t}}{p_2} - \frac{e^{p_1 \cdot t}}{p_1}) \cdot u(t)$$



Propriété 1: Les propriétés et tracés remarquables sont résumés

- Valeur à l'origine : s(0) = 0
- Asymptote à l'infini : $\lim_{t\to\infty} s(t) = K \cdot E_0$
- La tangente à l'origine horizontale

Régime apériodique critique

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{{\omega_0}^2}}$$

 ξ = 1, l'équation caractéristique admet une racine double $p=-\omega_0$

Cette valeur est négative, le système est donc stable. La sortie peut s'écrire sous la forme factorisée :

$$S(p) = \frac{K \cdot E_0 \cdot \omega_0}{(p + \omega_0)^2 \cdot p}$$

La décomposition en éléments simples s'écrit sous la forme

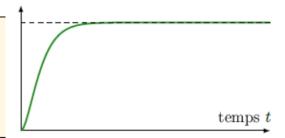
$$S(p) = \frac{\alpha}{p} + \frac{\beta}{(p + \omega_0)} + \frac{\gamma}{(p + \omega_0)^2}$$

La transformée de Laplace inverse s'obtient à partir du tableau des transformées de Laplace et des valeurs α , β , γ

$$s(t) = K \cdot E_0 \cdot u(t) \cdot (1 - (1 + t \cdot \omega_0) \cdot e^{-\omega_0 \cdot t})$$

Propriété 2 : Les propriétés et tracés remarquables sont résumés

- Valeur à l'origine : s(0) = 0
- Asymptote à l'infini : $\lim_{t \to \infty} s(t) = K \cdot E_0$
- La tangente à l'origine horizontale



Régime pseudo-périodique

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{{\omega_0}^2}}$$

 ξ < 1, le dénominateur possède deux racines complexes conjuguées

$$p = -\xi \cdot \omega_0 \pm i \cdot \omega_0 \cdot \sqrt{1 - \xi^2}$$

Les constantes ξ et ω 0 sont réelles et positives donc le système est stable car les pôles de sa fonction de transfert sont à partie réelle strictement négative.

La décomposition en éléments simples de seconde espèces donne

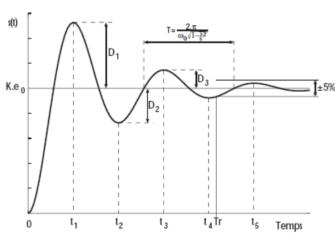
$$S(p) = \frac{K \cdot E_0 \cdot \omega_0^2}{(p^2 + 2 \cdot \xi \cdot \omega_0 \cdot p + \omega_0^2) \cdot p} = \frac{\alpha}{p} + \frac{\beta \cdot p + \gamma}{p^2 + 2 \cdot \xi \cdot \omega_0 \cdot p + \omega_0^2}$$

On en déduit la réponse temporelle par application de la transformée inverse de Laplace

$$s(t) = K \cdot E_0 \cdot u(t) \cdot \left(1 - e^{-\omega_0 \cdot \xi \cdot t} \cdot \left(\cos\left(\omega_0 \cdot \sqrt{1 - \xi^2} \cdot t\right) + \frac{\xi}{\sqrt{1 - \xi^2}} \cdot \sin\left(\omega_0 \cdot \sqrt{1 - \xi^2} \cdot t\right)\right)$$

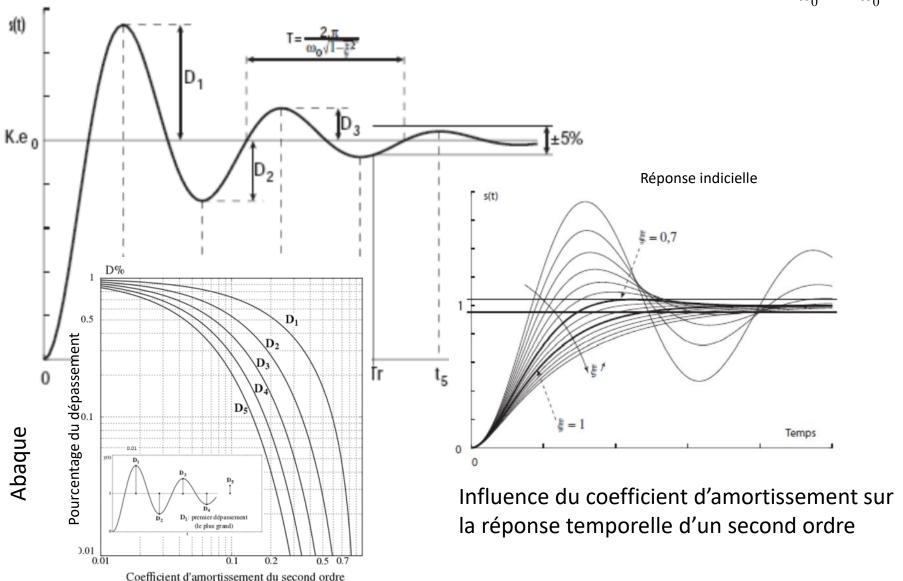
Propriété 3: Les propriétés et tracés remarquables sont résumés Figure 3:

- Fonction oscillante (partie sinusoïdale) qui représente donc des Keo dépassements et amortie (exponentielle décroissante).
- Valeur à l'origine : s(0) = 0
- Asymptote à l'infini : $\lim_{t\to\infty} s(t) = K \cdot E_0$
- La tangente à l'origine horizontale



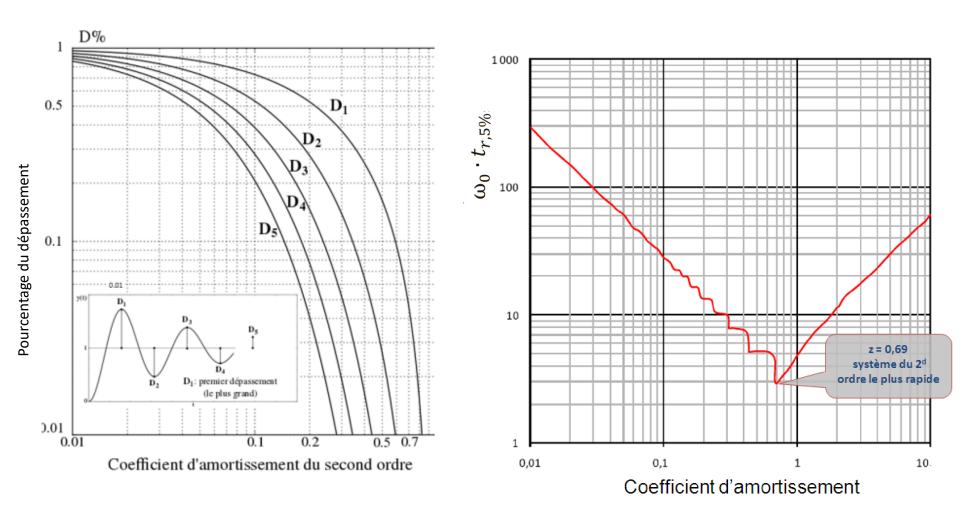
Régime pseudo-périodique

$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$



Abaques: Identification Sys 2^{ème} ordre

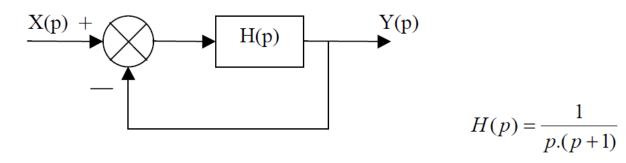
$$H(p) = \frac{K}{1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$



Etudes des systèmes linéaires

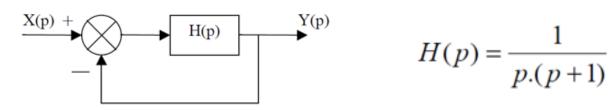
□ Définition :

- Un système est stable ssi la réponse du système tend vers 0 lorsque t tend vers ∞
- Un système est stable ssi les pôles de sa fonction de transfert sont à partie réelle négative.
- □ Exercice : Ce système bouclé est -il stable ?



Stabilité en boucle fermée (BF)

☐ Le système en BF est stable



$$H(p) = \frac{1}{p.(p+1)}$$

□ car sa transmittance en BF:

$$\frac{Y(p)}{X(p)} = \frac{H(p)}{1 + H(p)} = \frac{1}{p^2 + p + 1}$$

□ Présente des pôles à parties réelles négatives $p_{1/2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2} j$

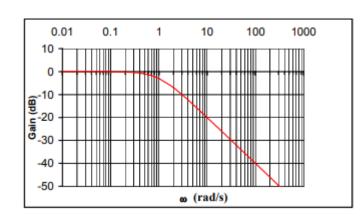
Le gain G et la phase ϕ sont décrits en fonction de la pulsation w=2 π f et exprimés en echelle semi logarithmique. Le plan de Bode consiste donc à tracer deux diagrammes, un de phase et un de module.

Exemple : $G(p) = \frac{1}{1+p}$

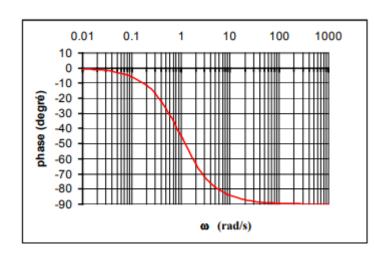
Gain: $G = 20.\log_{10} |H(j.\omega)|$

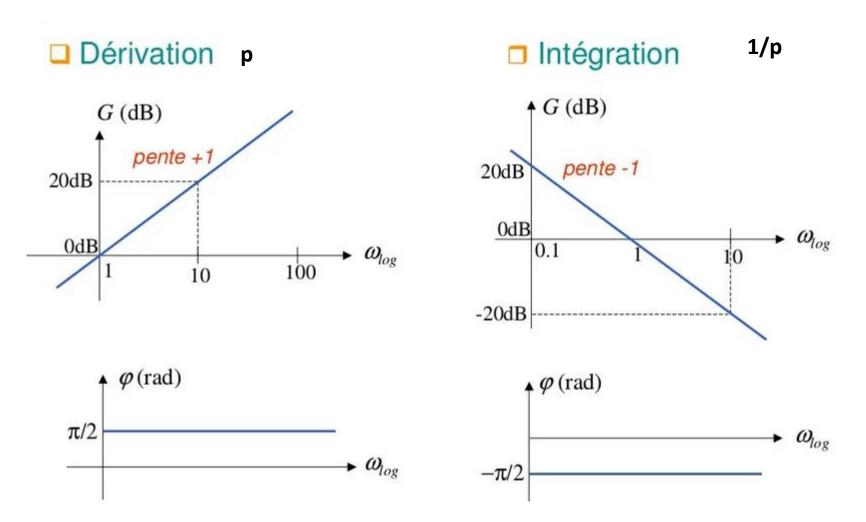
Phase: $\varphi = \arg(H(j.\omega))$

Courbe de Gain



Courbe de phase





- Premier ordre $H(s) = (1+Ts)^{-1}$ (T>0)
 - ♦ Gain $G = -10\log_{10}(1 + \omega^2 T^2)$
 - $\triangleright \omega T \ll 1, G \approx 0$

 $\gg \omega T >> 1$, $G \approx -20 \log_{10} \omega T$

asymptote horizontale

asymptote de pente -1

Les deux asymptotes se coupent en $\omega_c = \frac{1}{T}$

- \triangleright A $\omega = \omega_c$, on a G = -3 dB. ω_c pulsation de coupure à 3dB
- ♦ Phase $φ = -\arctan(ωT)$

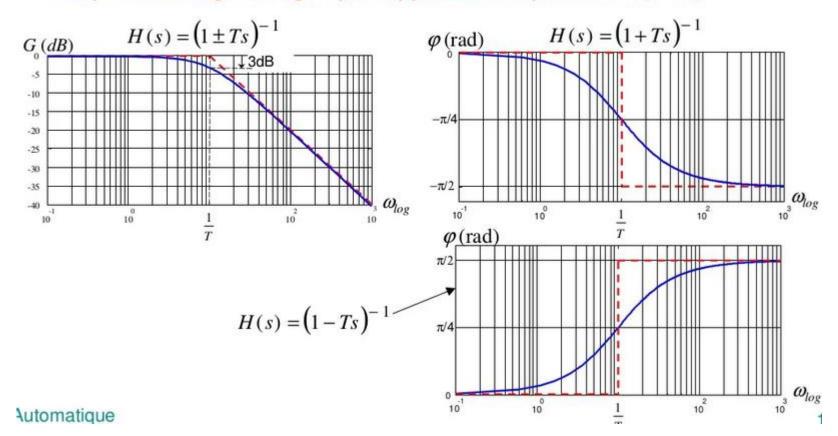
 - $\omega T << 1, \varphi \approx 0$ $\omega T >> 1, \varphi \approx -\frac{\pi}{2}$ asymptotes horizontales

$$\triangleright$$
 A $\omega = \omega_c$, on a $\varphi = -\frac{\pi}{4}$

Premier ordre $H(s) = (1-Ts)^{-1}$ (T>0)

$$G = -10\log_{10}(1 + \omega^2 T^2)$$
 mais $\varphi = \arctan(\omega T)$

La phase change de signe par rapport au cas précédent $(1+Ts)^{-1}$



Critères de stabilité

- ☐ Critères mathématiques
 - Critère de Routh-Hurwitz
 - Critère du lieu des racines

- ☐ Critère graphiques
 - Critère de Nyquist
 - Critère de Black-Nichols
 - Critère dans le diagramme de Bode

Critère de stabilité au sens de Routh

- ☐ On considère la fonction de transfert :
 - $\blacksquare \quad \mathsf{H}(\mathsf{p}) = \mathsf{N}(\mathsf{p})/\mathsf{D}(\mathsf{p})$
 - où $D(p) = a_n \cdot p^n + a_{n-1} \cdot p^{n-1} + ... + a_0 \text{ avec } a_n > 0$
- ☐ Le tableau de Routh se construit ainsi

p ⁿ	$a_{\rm n}$	2 _{n-2}	a _{n-4}	 \mathbf{a}_0
P^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	
P ⁿ⁻²	$b_n = \frac{a_{n-1}.a_{n-2} - a_{n-3}.a_n}{a_{n-1}}$	$b_{n-1} = \frac{a_{n-1}.a_{n-4} - a_{n-5}.a_n}{a_{n-1}}$		
P ⁿ⁻³	$\frac{b_{n}.a_{n-3} - a_{n-1}.b_{n-1}}{b_{n}}$	$\frac{b_{n}.a_{n-5} - a_{n-1}.b_{n-2}}{b_{n}}$		
\mathbf{p}^{0}				

☐ Critère : un système est stable si tous les termes de la 1^{er} colonne sont de même signe.

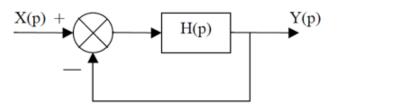
☐ On considère la fonction de transfert :

$$\frac{Y(p)}{X(p)} = \frac{H(p)}{1 + H(p)} = \frac{1}{p^2 + p + 1}$$

p^2	1	1
$oldsymbol{p}^1$	1	0
p^0	1	

Conclusion : Ce système est stable car tous les termes de la 1^{er} colonne sont de même signe.

☐ Exercice



$$H(p) = \frac{2.K}{p.(p+2)(p+3)}$$

- ☐ Déterminer le transfert de la BF : Y(p)/X(p)
- ☐ Donner le tableau de Routh
- ☐ Conclure sur la valeur de K pour assurer la stabilité

- ☐ Solution de l'exercice
 - La fonction de transfert en BF vaut :

$$\frac{H(p)}{1+H(p)} = \frac{2K}{p^3 + 5 \cdot p^2 + 6 \cdot p + 2K}$$

- Le tableau de Routh est :
- Les conditions de stabilité sont

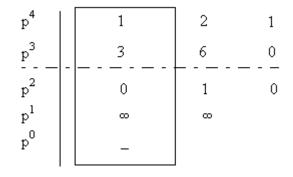
	30 - 2K	> 0
$\left\{ \right.$	5	- 0,
	2K > 0,	

p^3	1	6	0
p ²	5	2K	0
p^1	$\frac{30-2K}{5}$	0	0
p^0	2K	0	0

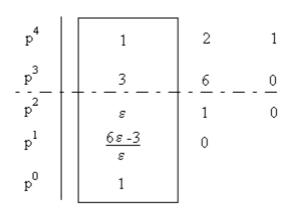
■ Soit 0 < K < 15

☐ Cas particulier

$$D(p) = p^4 + 3p^3 + 2p^2 + 6p + 1$$



■ Solution



On remplace le terme nul par un ε positif et on poursuit la construction du tableau de Routh:

- Lorsque l'on fait tendre ε vers zéro par valeurs positives, on constate que 6ε -3 end vers -3.
- Le système est donc instable.

☐ Cas particulier

$$D(p) = p^4 + 3p^3 + 4p^2 + 3p + 3$$

On se trouve dans le cas particulier où une ligne complète est nulle.

■ Solution

• On pose le polynôme auxiliaire

$$P_{anx}(p) = 3p^2 + 3$$

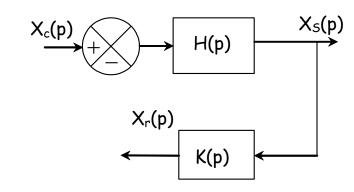
• On calcul sa dérivée par rapport à p

$$\frac{dP_{\text{max}}}{dp} = 6p$$

• Il reste à remplacer la ligne nulle par les coefficients de $\frac{dP_{\text{nux}}}{dx} = 6p$

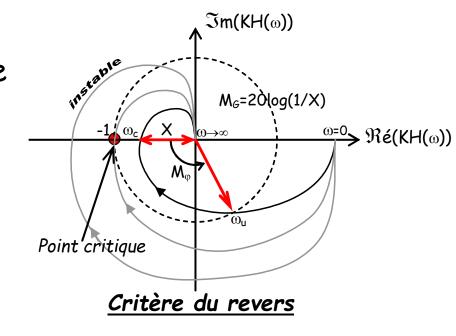
Critère de Nyquist

Toutes les racines de 1+K(p)H(p)=0 ont une partie réelle strictement négative (système stable) si le diagramme de Nyquist de la B.O. n'entoure pas le point -1



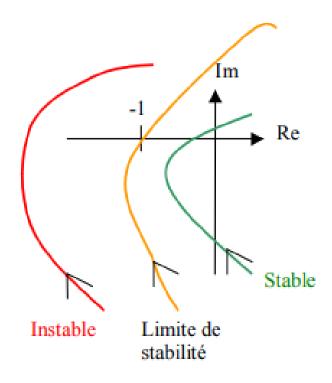
Critère du Revers

Le système est stable en boucle fermée si le diagramme de Nyquist de la transmittance en B.O: K(p)H(p) laisse le point -1 sur sa gauche lorsque la pulsation ω varie de 0^+ à l'infini.



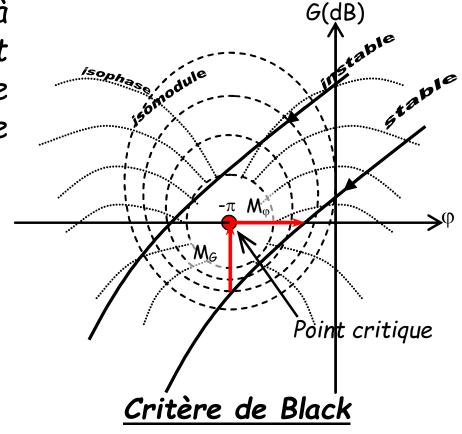
Critère de Nyquist (Revers)

Un système sera stable si, en parcourant le lieu de transfert dans le sens des w croissants, on laisse le point critique (-1,0) sur la gauche.



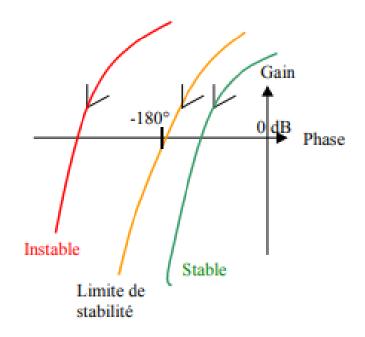
Critère de Black Nichols (Revers)

Si on laisse le point critique à sa droite quand on décrit la courbe de $T(j\omega)$ dans le sens des ω croissants: le système est stable.



Critère de Black Nichols (Revers)

Un système est stable si en parcourant le lieu de transfert dans le sens des w croissants, on laisse le point critique (-180°, Odb) sur la droite.



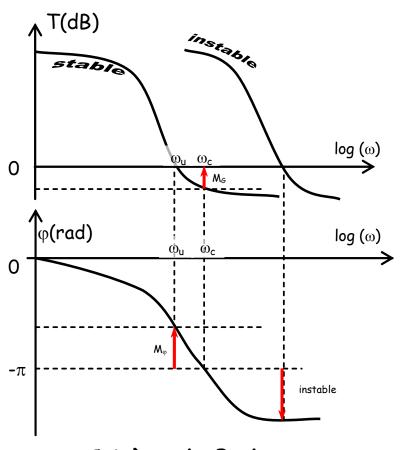
Critères dans le diagramme de Bode (Revers)

$$1 + K(p) \times H(p) = 0 \implies 1 + T(p) = 0 \implies T(p) = -1 \begin{cases} T_{dB} = 20 \log T(p) = 0 \\ ArgT(p) = -\pi \end{cases}$$

- □ Pour la fréquence ω_u pour la quelle $T_{dB}(\omega_u) = 0$ si
 - $\varphi(\omega_{\mu}) > -\pi$: stable
 - $\varphi(\omega_u) \leftarrow \pi$: instable

OU

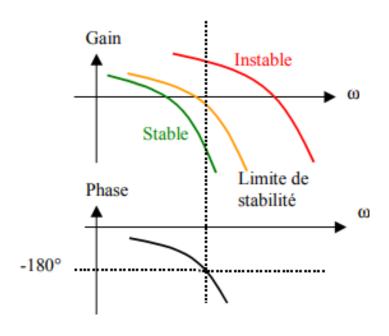
- Pour la fréquence ωC pour laquelle $Arg(T)=-\pi si$
 - $T(\omega C)>1$: instable
 - T(ωc)<1: stable



Critère de Bode

Critères dans le diagramme de Bode (Revers)

Un système est stable si, lorsque la courbe de phase par -180°, la courbe de gain passe en dessous de 0 db.



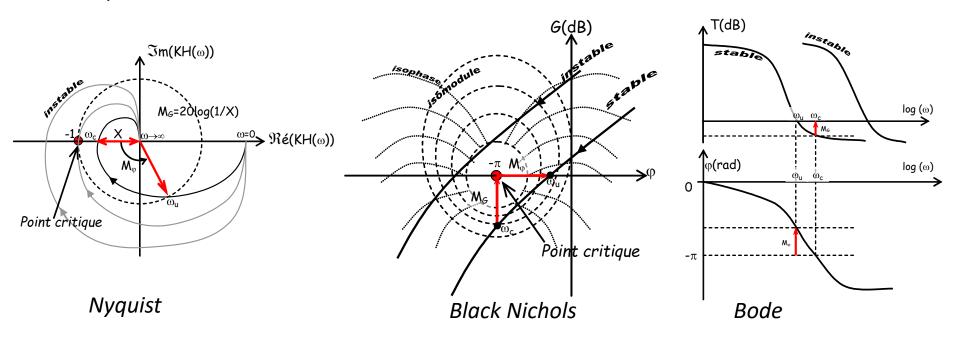
Marges de Gain et de Phase

Marge de phase (sur la boucle ouverte)

Déphasage supplémentaire qui ferait passer la courbe $\$ de l'autre côté du point critique. Valeur dont il faut augmenter ϕ pour KH =1 pour arriver au point critique.

Marge de gain (sur la boucle ouverte)

Nombre de dB dont on peut augmenter le gain sans provoquer l'instabilité. Valeur dont il faut augmenter KH lorsque ϕ =-180° pour arriver au point critique.



Marges de Gain et de Phase

C'est l'écart entre le tracé de la représentation fréquentielle de la fonction de transfert et le point critique -1 (0 db, -180°), c'est-à-dire le degré de stabilité du système bouclé.

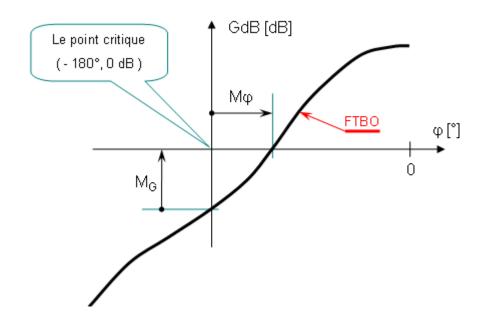
Marge de phase : $M\phi = \phi(\omega_1) + 180^\circ$

avec $G(\omega_1) = 0$

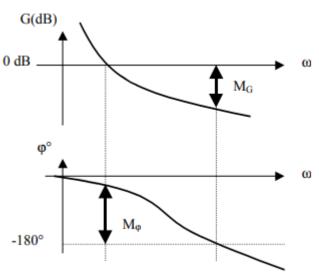
Marge de gain : $M_G = -G(\omega_2)$

avec $\varphi(\omega_2) = -180^\circ$

Dans Black

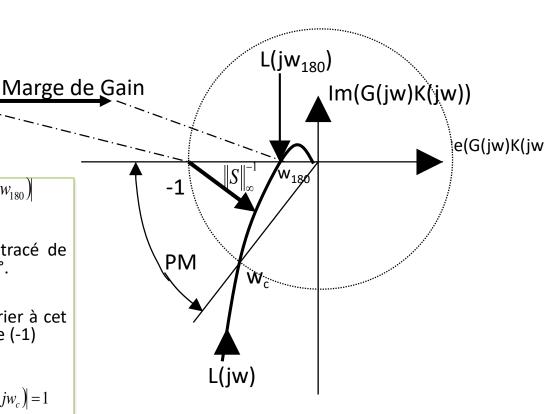


Dans Bode



Dans Nyquist

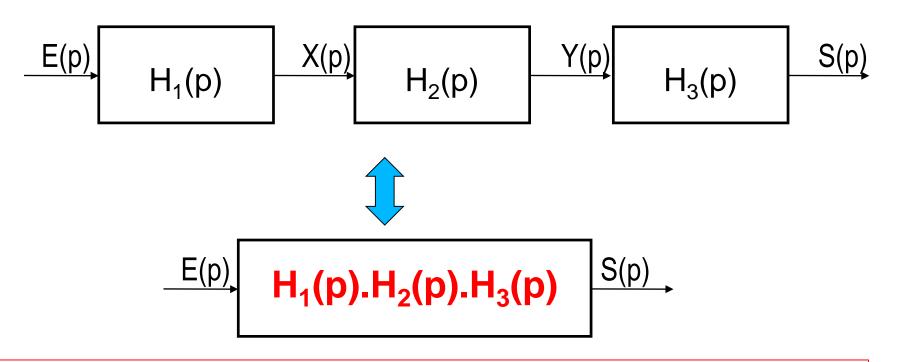
- » où w₁₈₀ est la pulsation à laquelle le tracé de Nyquist coupe le demi-axe de phase 180°.
- » elle mesure de combien le gain peut varier à cet endroit avant de toucher le point critique (-1)
- □ Marge de phase $PM = \angle L(jw_c) + 180^\circ$ où $|L(jw_c)| = 1$
 - » Elle mesure de combien la phase peut varier avant de rencontrer le point critique (-1)
- \square Marge de module $\|S\|_{\infty}^{-1}$
 - » Elle mesure la distance minimale du tracé de Nyquist au point critique



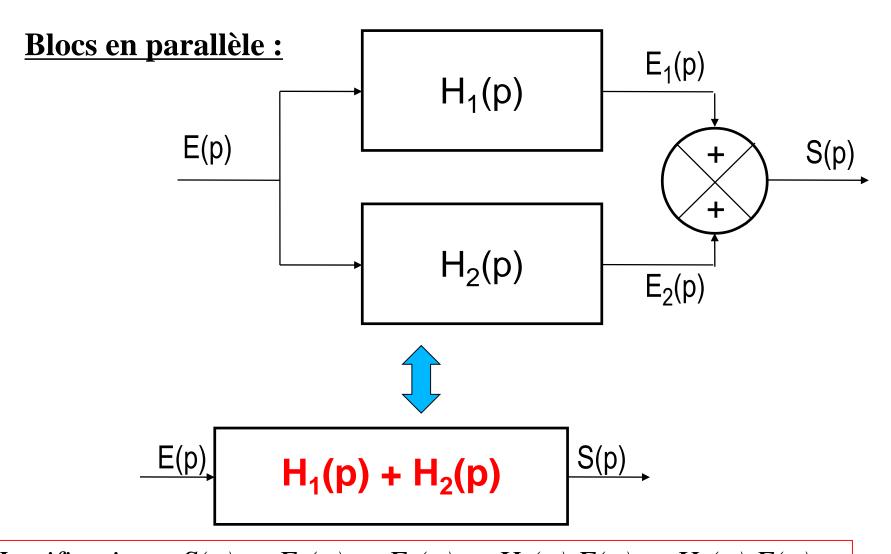
$$GM = \frac{1}{|L(jw_{180})|}$$

$$où \angle L(jw_{180}) = -180$$

Blocs en série :

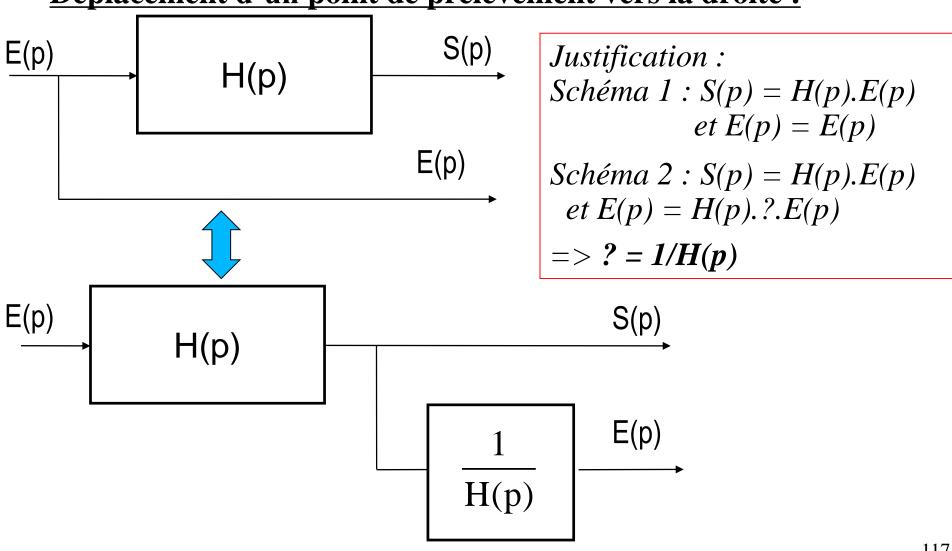


Justification :
$$S(p) = H_3(p).Y(p) = H_3(p).H_2(p).X(p) = H_3(p).H_2(p).H_1(p).E(p)$$

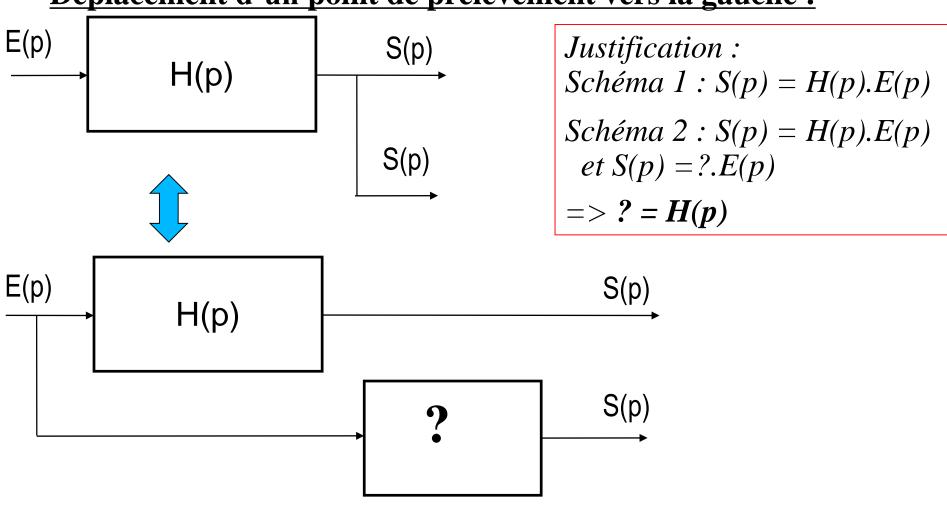


Justification: $S(p) = E_1(p) + E_2(p) = H_1(p).E(p) + H_2(p).E(p) = [H_1(p) + H_2(p)].E(p)$

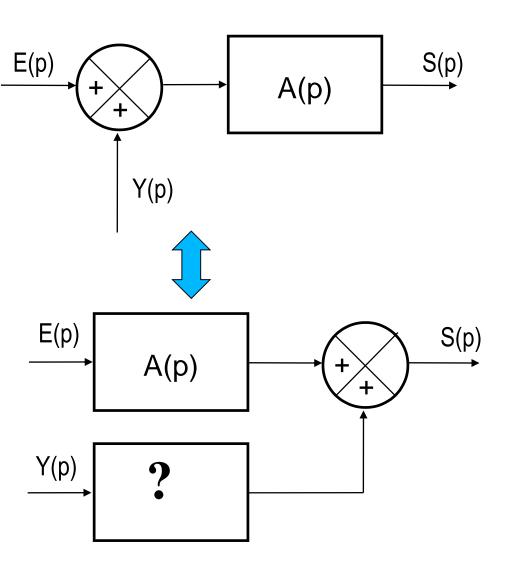
Déplacement d'un point de prélèvement vers la droite :



Déplacement d'un point de prélèvement vers la gauche :

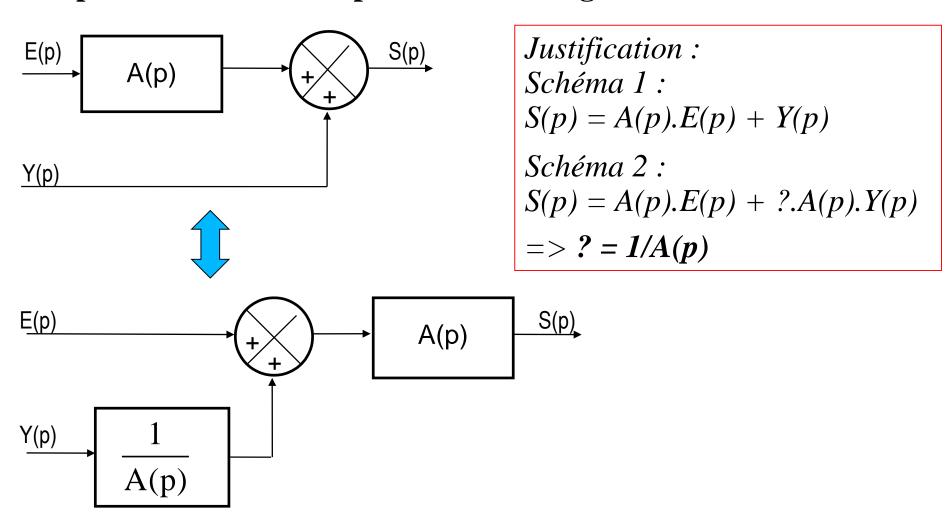


Déplacement d'un comparateur vers la droite :

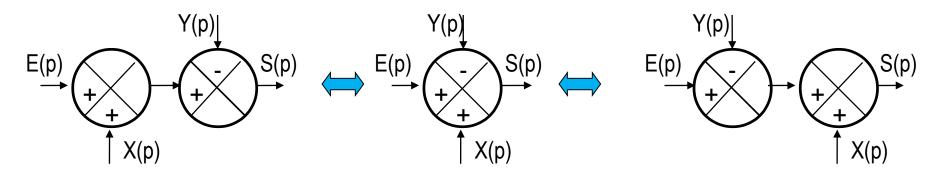


Justification: Schéma 1: S(p) = A(p).E(p) + A(p).Y(p)Schéma 2: S(p) = A(p).E(p) + ?.Y(p)=> ? = A(p)

Déplacement d'un comparateur vers la gauche :

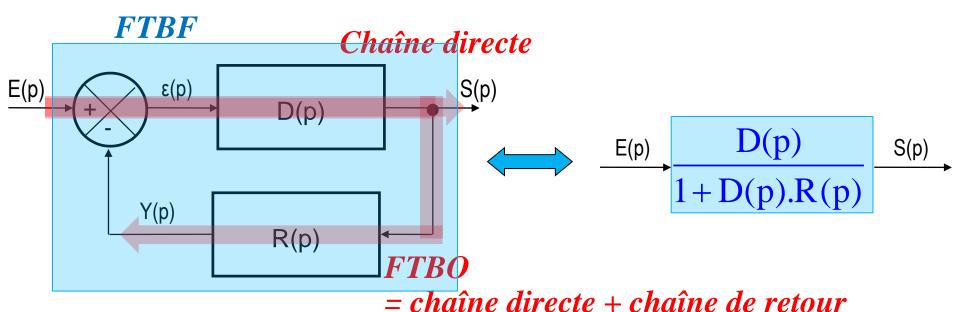


Déplacement entre comparateurs :

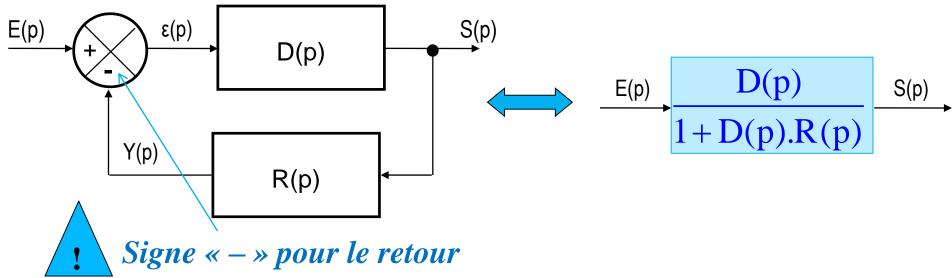


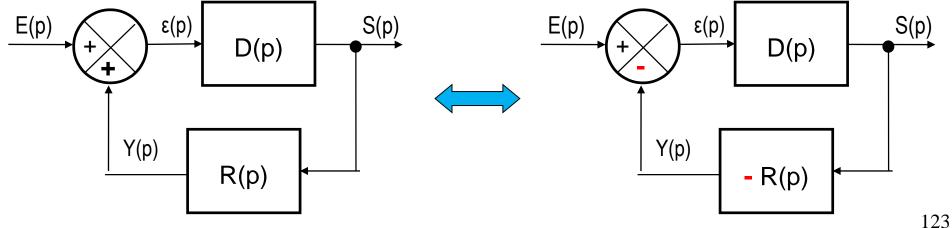
Justification:
$$S(p) = E(p) + X(p) - Y(p)$$

FTBO et FTBF:

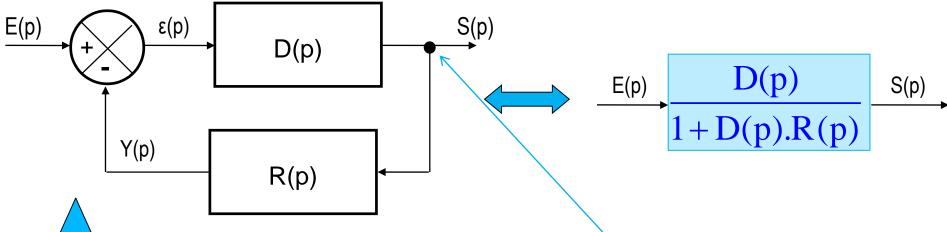


$$FTBF = \frac{S(p)}{E(p)} = \frac{\text{chaine directe}}{1 + FTBO}$$

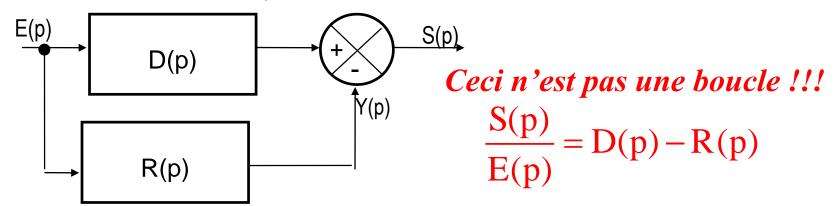




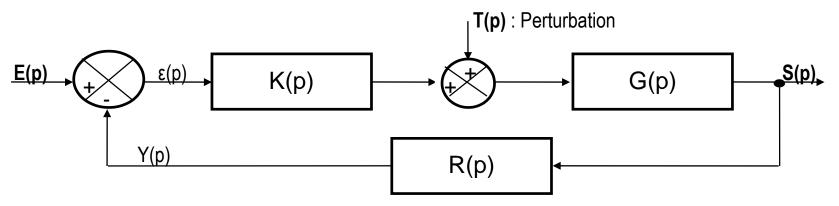
FTBO et FTBF:



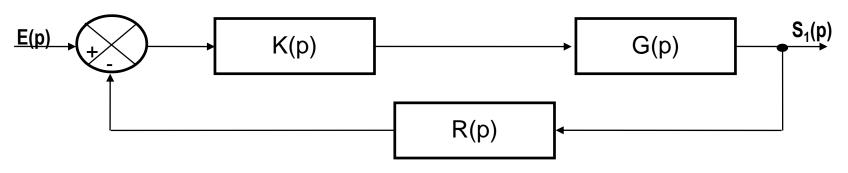
Pour que le système soit bouclé, le point de prélèvement doit être situé après le comparateur (alors seulement le « retour » existe)



Système multi-entrées (théorème de superposition) :

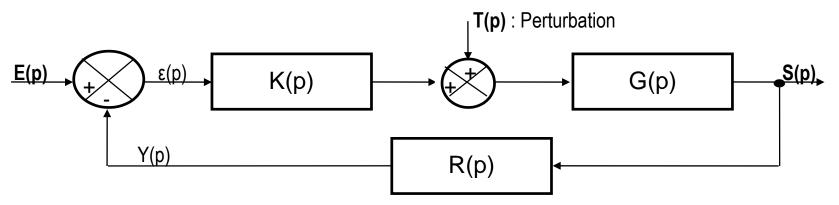


Fonction de transfert entre E(p) et S(p): prendre T(p)=0:



$$H_1(p) = \frac{S_1(p)}{E(p)} = \frac{K(p).G(p)}{1 + K(p).G(p).R(p)}$$

Système multi-entrées (théorème de superposition) :



Au final, la sortie pourra donc s'écrire :

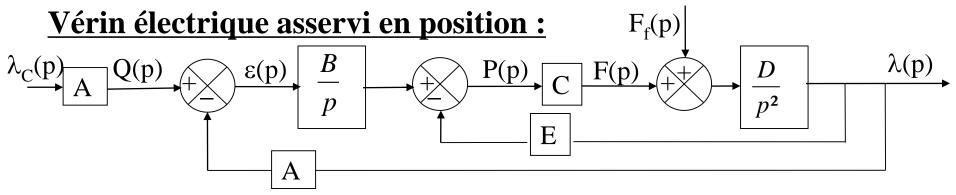
$$S(p) = H_1(p).E(p) + H_2(p).T(p)$$

$$= \frac{K(p).G(p)}{1 + K(p).G(p).R(p)}.E(p) + \frac{G(p)}{1 + G(p).R(p).K(p)}.T(p)$$

On étudiera donc séparément les effets des différentes entrées sur la sortie!

Concrètement nous n'étudierons qu'une seule entrée à la fois.

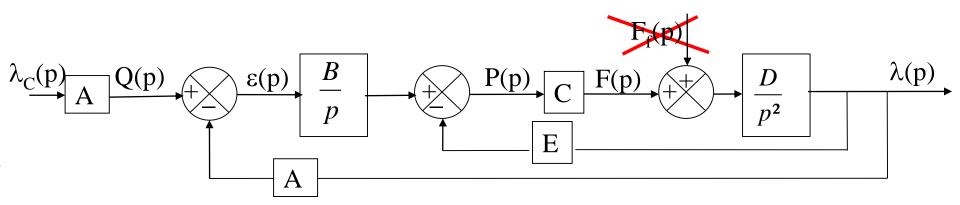
Exemple de FT à partir d'un schéma-blocs



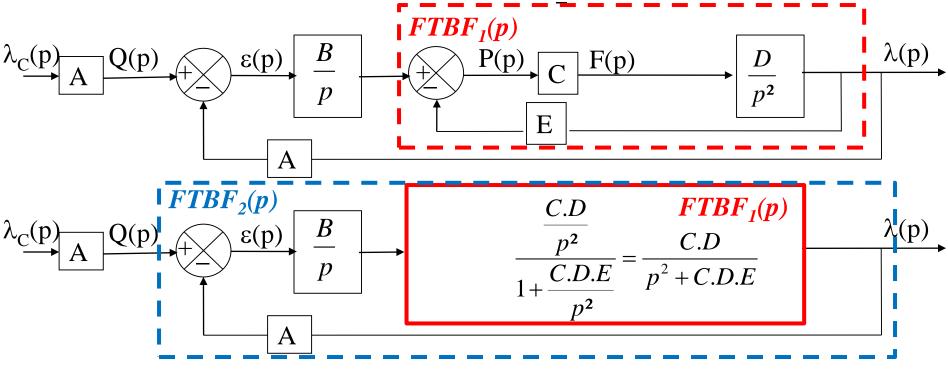
$$\lambda(p) = H_1(p).\lambda_C(p) + H_2(p).F_f(p)$$

<u>Pour déterminer $H_1(p)$ </u>: On considère que $F_f(p)=0$

Deux méthodes possibles, soit la méthode directe, soit via le schémablocs (plus simple ici car il n'y a que des boucles simples)



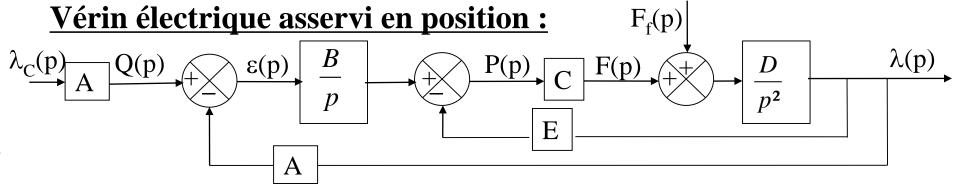
Exemple de FT à partir d'un schéma-blocs



$$\frac{\frac{B}{p} \cdot \frac{C.D}{p^2 + C.D.E}}{1 + \frac{B}{p} \cdot \frac{C.D}{p^2 + C.D.E} \cdot A} = \frac{B.C.D}{p^3 + C.D.E.p + A.B.C.D}$$

$$\frac{\frac{B}{p} \cdot \frac{C.D}{p^2 + C.D.E}}{1 + \frac{B}{p} \cdot \frac{C.D}{p^2 + C.D.E} \cdot A} = \frac{B.C.D}{p^3 + C.D.E.p + A.B.C.D}$$

Exemple de FT à partir d'un schéma-blocs



$$\lambda(p) = H_1(p).\lambda_C(p) + H_2(p).F_f(p)$$

<u>Pour déterminer $H_2(p)$:</u> On considère que $\lambda_C(p)=0$

Deux méthodes possibles, soit la méthode directe, soit via le schémablocs (plus compliqué ici car les boucles sont complexes)

$$\lambda(p) = \frac{D}{p^2} \cdot \left[F_f(p) + C \cdot \left(-E \cdot \lambda(p) + \frac{B}{p} \cdot \left(A \cdot \mathbf{0} - A \cdot \lambda(p) \right) \right) \right]$$

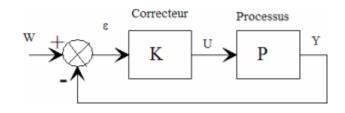
$$\lambda(p) \left[1 + \frac{D \cdot C}{p^2} \cdot \left(E + \frac{A \cdot B}{p} \right) \right] = \frac{D}{p^2} \cdot F_f(p)$$

$$H_2(p) = \frac{\lambda(p)}{F_f(p)} = \frac{D \cdot p}{A \cdot B \cdot C \cdot D + C \cdot D \cdot E \cdot p + p^3}$$
129

$$\lambda(p) \left[1 + \frac{D.C}{p^2} \cdot \left(E + \frac{\overline{A.B}}{p} \right) \right] = \frac{D}{p^2} \cdot F_f(p)$$

$$H_2(p) = \frac{\lambda(p)}{F_f(p)} = \frac{D.p}{A.B.C.D + C.D.E.p + p^3}$$

Commande classique d'asservissement



On note L = K. P le transfert de boucle

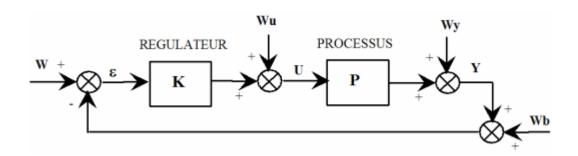
On note S la fonction de sensibilité

$$\frac{\varepsilon}{W} = \frac{1}{1+L} = S$$

On note T la fonction de sensibilité complémentaire $\frac{Y}{W} = \frac{L}{1+1} = T$

$$\frac{Y}{W} = \frac{L}{1+L} = T$$

Commande classique d'asservissement + perturbations



Avec:

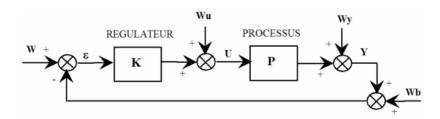
- W_u bruit sur l'entrée u
- W_{ν} bruit de sortie
- W_b bruit de mesure

La sortie Y est alors donnée part la relation suivante

$$Y = \frac{K.P}{1 + K.P}.W + \frac{P}{1 + K.P}.W_u + \frac{1}{1 + K.P}.W_y - \frac{K.P}{1 + K.P}.W_b$$

Ensemble des différentes fonctions de sensibilités

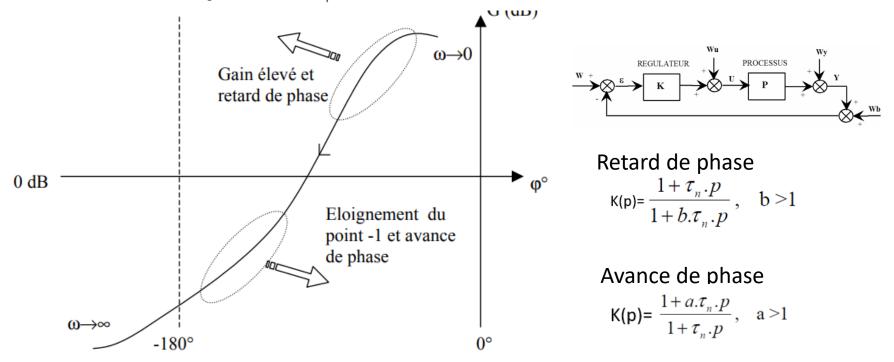
Le gain $K(p) = \frac{R(p)}{S(p)}$ et le process $P(p) = \frac{B(p)}{A(p)}$ sont représentés par des fonctions de transferts



Sensibilité de la sortie à une perturbation sur la sortie	$S_{yy} = \frac{1}{1 + K.P}$	$S_{yy} = 1 - T$	$S_{yy} = \frac{A.S}{AS + B.R}$
Sensibilité de la sortie à une perturbation sur la mesure	$S_{yb} = -\frac{K.P}{1 + K.P}$	$S_{yb} = -T$	$S_{yb} = -\frac{B.R}{AS + B.R}$
Sensibilité de la sortie à une perturbation sur la commande	$S_{yu} = \frac{P}{1 + K.P}$	$S_{yu} = P.S_{yy}$	$S_{yu} = \frac{B.S}{AS + B.R}$
Sensibilité de la commande à un bruit de sortie ou de mesure	$S_{uy} = -\frac{K}{1 + K.P}$	$S_{uy} = -K.S_{yy}$	$S_{uy} = -\frac{A.R}{AS + B.R}$

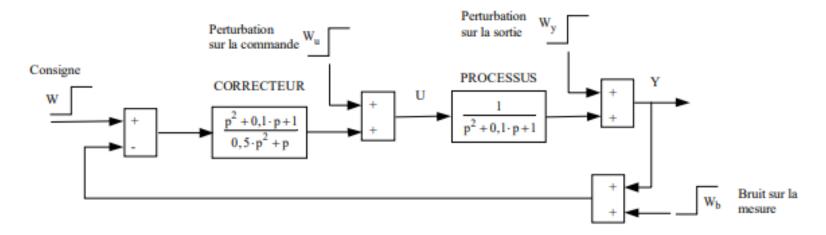
Allure recherchée lors de l'étude du correcteur K

- d'éloigner le lieu de Black du point -1 (0 dB, -180°) de façon à augmenter la stabilité, c'est à dire augmentation de la marge de gain et de la marge de phase. Souvent on choisit: $M_G = 10$ dB et $Mφ \ge 45°$



- d'augmenter le gain du système en boucle ouverte pour augmenter la précision. L'annulation de l'erreur statique peut être obtenue si le système en boucle ouverte admet une intégration (1/p).
- D'augmenter la bande passante, ce qui diminue le temps de réponse,
- Provoquer une avance de phase en moyenne et haute fréquences et un retard de phase en basse fréquence pour une meilleure stabilité.

Exemple

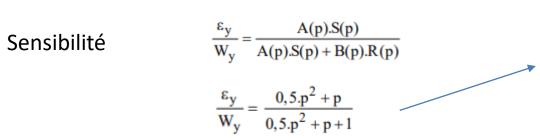


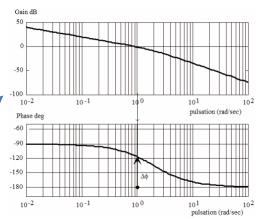
Montrer que

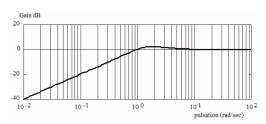
$$\frac{Y(p)}{W(p)} = \frac{1}{0.5 \cdot p^2 + p + 1}$$

Transfert de boucle

$$K(p).P(p) = \frac{B(p).R(p)}{A(p).S(p)} = \frac{1}{0.5.p^2 + p}$$



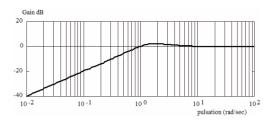




Réponse fréquentielle 134

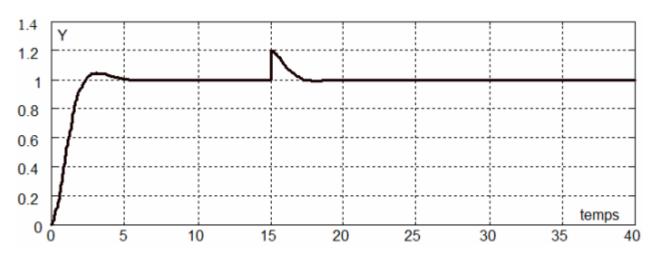
Exemple

Sensibilité
$$\frac{\varepsilon_y}{W_y} = \frac{0.5 \cdot p^2 + p}{0.5 \cdot p^2 + p + p}$$



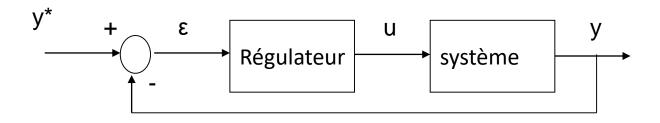
Réponse fréquentielle

Réponse temporelle à une perturbation échelon en sortie à t=15s



Réponse indicielle avec une perturbation sur la sortie

Etude des correcteurs : Régulateur de type proportionnel intégrale dérivée



$$u(t) = K_p * (y(t) - y(t)^*) + K_i \int (y(t) - y(t)^*) dt + K_d \frac{d}{dt} (y(t) - y(t)^*)$$

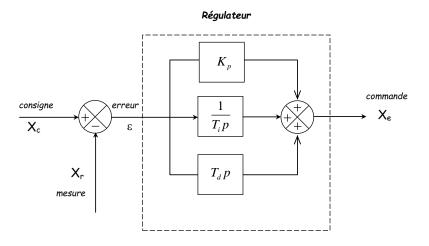
$$= K_p * \varepsilon(t) + K_i \int \varepsilon(t) dt + \frac{d}{dt} \varepsilon(t)$$

Pour augmenter la dynamique et compenser les inerties dues au temps mort on ajoute une action dérivée au régulateur.

Structure : Régulateur de type proportionnel intégrale dérivée

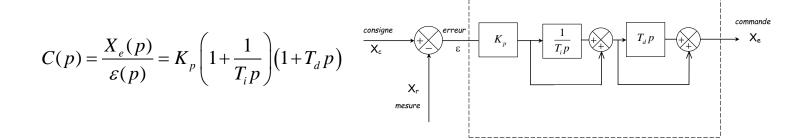
Parallèle

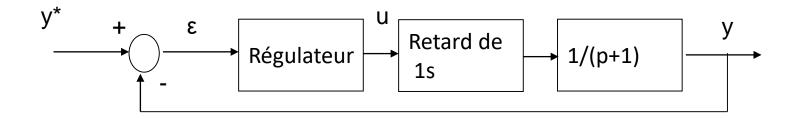
$$C(p) = \frac{X_e(p)}{\varepsilon(p)} = K_p + T_d p + \frac{1}{T_i p}$$

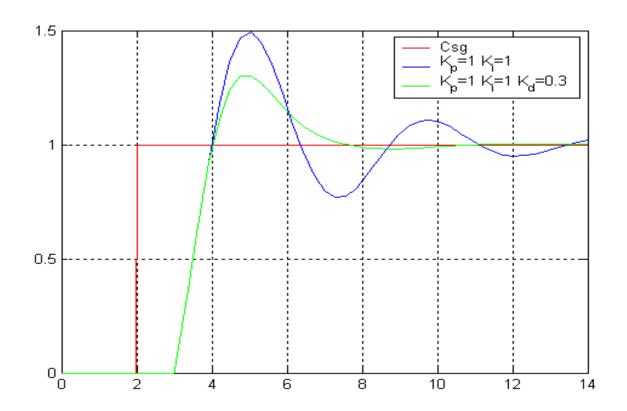


Régulateur

Série







Résumé : du régaleur PID

Action	Avantage	Désavantage
Р	Dynamique	Ne permet pas d'annuler une erreur statique
ı	Annulation d'erreur	
	statique	Action lente
D	Action très dynamique	Sensibilité aux bruits

Avantage des régulateur PID :

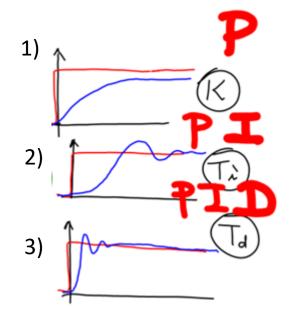
- -Structure simple
- -Pas besoin de modélisation pour la synthèse du régulateur

Désavantage des régulateur PID

- -Réglage empirique
- -Pas de garantie sur les performances et la stabilité

Résumé : du régaleur PID

- 1) Le correcteur proportionnel amplifie le signal d'erreur mais il persiste une erreur.
- 2) On ajoute un correcteur intégral pour annuler l'erreur statique.
- 3) Si le système ne réagit pas assez vite, il convient d'ajouter le correcteur dérivé.



Compensation de pôles et/ou zéros instables

Hypothèse: Pour assurer une stabilité interne en présence de pôles et/ou zéros instables on suppose qu'il n'y a pas de compensation de pôles et zéros entre K(s) et G(s) (robustesse aux incertitudes de modèle).

Exemple:
$$P(s) = \frac{1}{s-1}$$
, $K_1(s) = \frac{s-1}{s+1}$, $K_2(s) = 2$

Le correcteur $K_1(s)$ compense le pôle instable p=1, on obtient dès lors pour $K_1(s)$ et $K_2(s)$ respectivement les fonctions de sensibilité complémentaire

$$T_1(s) = \frac{\frac{1}{s+1}}{1+\frac{1}{s+1}} = \frac{1}{s+2}, \qquad T_2(s) = \frac{\frac{2}{s-1}}{1+\frac{2}{s-1}} = \frac{2}{s+1}$$

$$P^{\delta}(s) = \frac{1}{s-1+\delta},$$

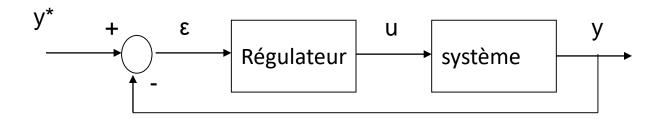
• Si l'on considère maintenant une petite variation δ du pôle du procédé alors :

$$T_1(s) = \frac{\frac{1}{s-1+\delta} \frac{s-1}{s+1}}{1+\frac{1}{s-1+\delta} \frac{s-1}{s+1}} = \frac{s-1}{(s-1+\delta)(s+1)+s-1} = \frac{s-1}{s^2+(\delta+1)s+\delta-2}, \qquad T_2(s) = \frac{\frac{2}{s-1+\delta}}{1+\frac{2}{s-1+\delta}} = \frac{2}{s+1+\delta}$$

 \checkmark T₁(s) est alors instable pour une perturbation δ très faible, alors que T₂(s) reste stable pour δ >-1

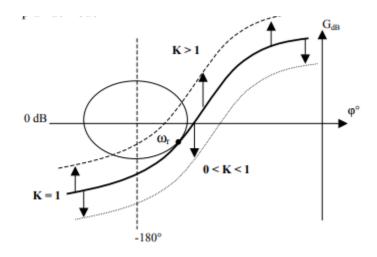
Correcteur proportionnel

☐ Hypothèse : Régulateur égal à un gain proportionnel constant noté K



☐ Action du correcteur

• Ce correcteur équivaut à une translation verticale de la courbe dans plan de black et bode

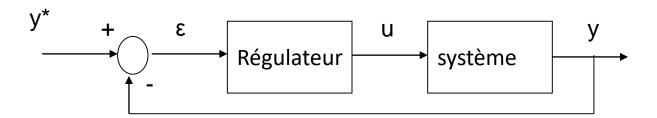


Correcteur proportionnel Intégral

Hypothèse : Régulateur est noté C(p) et peut être représenté par

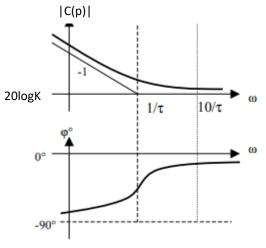
$$C(p) = K.\frac{1 + \tau p}{\tau p} ,$$

K > 0, $\tau > 0$



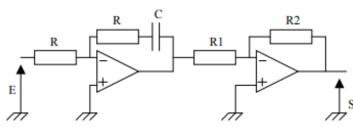
Action du correcteur

- Ce correcteur introduit un pôle à l'origine. L'action de ce correcteur se fait sur les basses fréquences. La présence d'un intégrateur annule l'erreur statique, mais il ralentit le système et peut le déstabiliser s'il est mal placé.
- On remarque, sur le diagramme de Bode, que ce correcteur n'influence pratiquement plus la phase pour des pulsations telles que w > $10/\tau$



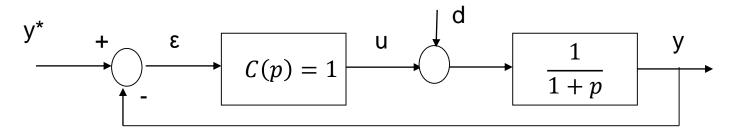
Pour information : Réalisation électrique du régulateur PI

$$C(p) = \frac{R_2}{R_1} \cdot \frac{1 + RC \cdot p}{RC \cdot p}$$
$$\tau = R \cdot C$$
$$K = R_2 / R_1$$



Application: Influence correcteurs P et PI

Hypothèse: Régulateur C(p) égal à un régulateur P



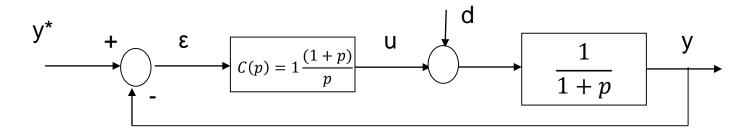
- Donner le bode du transfert de boucle
- Donner la fonction de sensibilité et analyser la réponse de l'erreur à $t \rightarrow \infty$ pour une perturbation d(t) constante

$$\frac{\varepsilon(p)}{d(p)} = 2$$

Aide utiliser le théorème des valeurs aux limites

Application: Influence correcteurs P et PI

Hypothèse: Régulateur C(p) égal à un régulateur PI



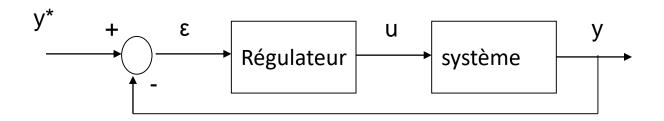
- Donner le bode du transfert de boucle
- Donner la fonction de sensibilité et analyser la réponse de l'erreur à $t \rightarrow \infty$ pour une perturbation d(t) constante

$$\frac{\varepsilon(p)}{d(p)} = ?$$

Aide utiliser le théorème des valeurs aux limites

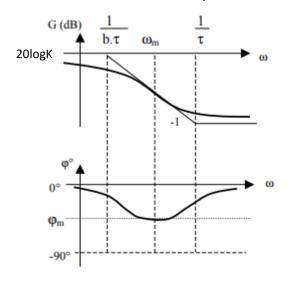
Correcteur à retard de phase

Hypothèse : Régulateur égal à $C(p) = K \cdot \frac{1 + \tau \cdot p}{1 + b \cdot \tau \cdot p}$, b > 1, K > 1, $\tau > 0$



☐ Action du correcteur

 L'action se fait sur les basses fréquences. Il permet de réduire l'erreur statique et augmente la robustesse dans la zone fréquentielle souhaitée



O dB

-180°
-90°

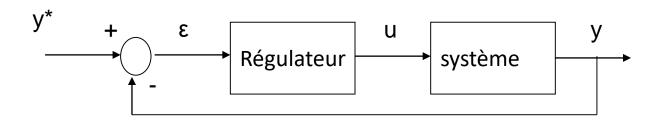
Effet du correcteur à retard de phase

Bode et Phase du correcteur

Loop avec et sans le correcteur

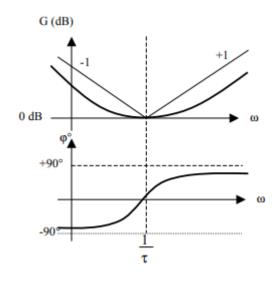
Correcteur PID

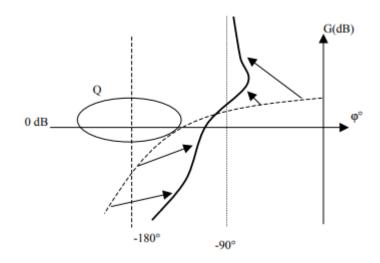
Hypothèse : Régulateur égal à $C(p) = A + \tau_d \cdot p + \frac{\tau_i}{p} = \frac{K}{\tau \cdot p} (1 + \tau_1 \cdot p) (1 + \tau_2 \cdot p)$



☐ Action du correcteur

 L'action se fait sur toutes les fréquences. Son effet est stabilisant, il annule l'erreur statique et contribue à augmenter la rapidité.



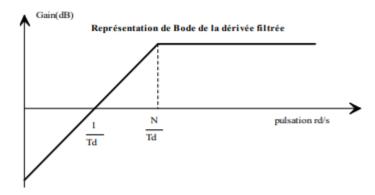


Correcteur PID filtré

L'action dérivée d'un correcteur PID peut poser des problèmes d'amplification du bruit dans les hautes fréquences, c'est pour cela que l'on adjoint souvent à l'action dérivée un filtre passe bas du premier ordre. Le transfert d'un PID filtré est alors:

$$\frac{U(p)}{\varepsilon(p)} = K_p \cdot \left(1 + \frac{1}{T_i \cdot p} + \frac{T_d \cdot p}{1 + \frac{T_d \cdot p}{N}}\right) = \frac{\frac{K_p}{T_i} + K_p \cdot \left(1 + \frac{T_d}{N \cdot T_i}\right) \cdot p + K_p \cdot T_d \cdot \left(1 + \frac{1}{N}\right) \cdot p^2}{p + \frac{T_d}{N} \cdot p^2}$$

La représentation fréquentielle de l'action dérivée est donnée par la figure



Ce régulateur dispose de quatre paramètres de réglages qui pourront être mis à profit pour maîtriser la dynamique d'un processus du second ordre.