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in each step and Xi+1 is set as Xi+1 = Xi + Ei until ‖Ω(Xi )‖ be-

comes less than a specified tolerance value. It may be noted that (27)

is a Sylvester equation for Ei .

REFERENCES

[1] S. V. Emelyanov, “Variable Structure Control Systems,” in. Moscow,
Russia: Nauka, 1967.

[2] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans.
Autom. Control, vol. AC-22, no. 2, pp. 212–222, Apr. 1977.

[3] J. Y. Hung, W.-B. Gao, and J. C. Hung, “Variable structure control: A
survey,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2–21, Feb. 1993.

[4] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to
sliding mode control,” IEEE Trans. Control Syst. Technol., vol. 7, no. 3,
pp. 328–342, May 1999.

[5] K. D. Young and U. Ozguner, “Sliding-mode design for robust linear
optimal control,” Automatica, vol. 33, no. 7, pp. 1313–1323, Jul. 1997.

[6] M. Basin, A. Ferreira, and L. Fridman, “LQG-robust sliding mode con-
trol for linear stochastic systems with uncertainties,” in Proc. 2006 Int.
Workshop Var. Struct. Syst., Alghero, Italy, Jun. 2006, pp. 74–79.

[7] F. J. Bejarano, L. Fridman, and A. Poznyak, “Output integral sliding mode
with application to LQ- optimal control,” in Proc. 2006 Int. Workshop Var.
Struct. Syst., Alghero, Italy, Jun. 2006, pp. 68–73.

[8] A. Bartoszewicz, “Discrete-time sliding mode control strategies,” IEEE
Trans. Ind. Electron., vol. 45, no. 4, pp. 633–637, Aug. 1998.

[9] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure
control systems,” IEEE Trans. Ind. Electron., vol. 42, no. 2, pp. 117–
122, Apr. 1995.

[10] A. Bartoszewicz and A. Nowacka, “Optimal design of the shifted switch-
ing planes for VSC of the third order system,” Trans. Inst. Meas. Control,
vol. 28, no. 4, pp. 335–352, 2006.

[11] F. Betin, D. Pinchon, and G. A. Capolino, “A time-varying sliding sur-
face for robust position control of a DC motor drive,” IEEE Trans. Ind.
Electron., vol. 49, no. 2, pp. 462–473, Apr. 2002.

[12] C. Y. Tang and E. A. Misawa, “Sliding surface design for a discrete VSS
using LQR technique with a preset eigenvalue,” in Proc. Am. Control
Conf., San Diego, CA, Jun. 1999, pp. 520–524.

[13] B. Drazenovic, “The invariance conditions in variable structure systems,”
Automatica, vol. 5, pp. 287–295, 1969.

[14] H. Fortell, “A generalized normal form and its application to sliding mode
control,” in Proc. IEEE Conf. Decis. Control, New Orleans, LA, Dec.
1995, pp. 13–18.

[15] C. Califano, S. Monaco, and D. Normand-Cyrot, “On the discrete-time
normal form,” IEEE Trans. Autom. Control, vol. 43, no. 11, pp. 1654–
1658, Nov. 1998.

[16] K. J. Astrom and B. Wittenmark, Computer Controlled Systems, Theory
and Design. Englewood Cliffs, NJ: Prentice Hall, 1997.

[17] P. Dorato, C. Abdallah, and V. Cerone, Linear-Quadratic Control, An
Introduction. Englewood Cliffs, NJ: Prentice Hall, 1995.

[18] G. Bartolini, A. Ferrara, and V. Utkin, “Adaptive sliding mode control in
discrete-time systems,” Automatica, vol. 31, no. 5, pp. 769–773, 1995.

[19] B. Veselic, C. Milosavljevic, and D. Mitic, “Discrete-time sliding mode
based controller and disturbance estimator design for tracking servo-
systems,” presented at the 8th Triennial Int. SAUM Conf. Syst., Autom.
Control Meas., Belgrade, Serbia, Nov. 2004.

[20] S. Janardhanan and B. Bandyopadhyay, “Discrete sliding mode control
of systems with unmatched uncertainty using multirate output feedback,”
IEEE Trans. Autom. Control, vol. 51, no. 6, pp. 1030–1035, Jun. 2006.

[21] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis, “Static output
feedback—A survey,” Automatica, vol. 33, no. 2, pp. 125–137, Feb. 1997.

[22] B. Bandyopadhyay and S. Janardhanan, Discrete-time Sliding Mode Con-
trol: A Multirate Output Feedback Approach (Lecture Notes in Control
and Information Sciences, series), vol. 223, M. Thoma and M. Morari,
Eds. New York: Springer, 2005.

[23] C. Y. Tang and E. A. Misawa, “Discrete variable structure control for
linear multivariable systems,” J. Dyn. Syst. Meas. Control, vol. 122,
no. 4, pp. 783–792, Dec. 2000.

[24] S. Janardhanan and B. Bandyopadhyay, “Output feedback sliding mode
control for uncertain systems using fast output sampling technique,” IEEE
Trans. Ind. Electron., vol. 53, no. 5, pp. 1677–1682, Oct. 2006.

[25] C. Y. Tang and E. A. Misawa, “Discrete variable structure control for linear
multivariable systems: The state feedback case,” in Proc. Am. Control
Conf., Philadelphia, PA, Jun. 1998, pp. 114–118.

[26] N. J. Higham and H.-M. Kim, “Solving a quadratic matrix equation by
Newtons’s method with exact line searches,” SIAM J. Matrix Anal. Appl.,
vol. 23, no. 2, pp. 303–316, 2001.

Unknown Input Observers for Switched Nonlinear

Discrete Time Descriptor Systems

D. Koenig, B. Marx, and D. Jacquet

Abstract—In this paper, a linear matrix inequality technique for the
state estimation of discrete-time, nonlinear switched descriptor systems is

developed. The considered systems are composed of linear and nonlinear
parts. An observer giving a perfect unknown input decoupled state estima-
tion is proposed. Sufficient conditions of global convergence of observers
are proposed. Numerical examples are given to illustrate this method.

Index Terms—Hybrid systems, polyquadratic stability, switched de-
scriptor systems, unknown input (UI) observers.

I. INTRODUCTION

Switched control and/or observer systems have recently received

much attention. Switched systems belong to a special class of hybrid

systems. They are defined by a collection of dynamical (linear and/or

nonlinear) subsystems together with a switching rule that specifies

the switching between these subsystems. A survey on basic problems

in switched system stability and design is available in [26] (see the

references therein). Many such problems occur in practice: power con-

verter systems where the switching signal is determined by pulse with

pulsewidth modulation (PWM) and gain scheduling control systems

are examples among many others. One can study the existence of a

switching rule that ensures the stability of the switched system. One

can assume that the switching sequence is not known a priori, and

look for stability results under arbitrary switching sequences. On the

one hand, most of the contributions in this field deal with stability

analysis and control synthesis [7], [18]. On the other hand, unknown

input observers (UIOs) have been widely studied for nonsingular sys-

tems [9], [29], singular systems [6], [10], [16], nonlinear descriptor

systems [17], and recently, for switched nonsingular systems [20]. Nev-

ertheless, there is no result extending the method mentioned in [20] to

the general representation of switched nonlinear descriptor systems,

although many practical systems can be described by them [2], and

their fault diagnosis may be based on UIO design [21].

As mentioned in [32], there are generally two broad approaches for

a nonlinear observer design. In the first approach, the objective is to

find a coordinate transformation so that the state-estimation error dy-

namics are linear in the new coordinates, and then, linear techniques

can be performed [13], [14], [30]. Necessary and sufficient conditions

have been established [19], [30] for the existence of such a coordinate

transformation. The second approach does not need the transforma-

tion, and the observer design is directly based on the original sys-
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tem. Because of the complexity of nonlinear systems, a lot of directly

designing methods have been developed. For instance, Praly et al.

[15], [22], [28] contributed some results on an observer design using

high-gain techniques. Besançon and Hammouri [3] and Dawson [12]

studied the observer design from the solution of the Riccati equation for

Lipschitz nonlinear systems. Adaptive observers have been proposed

for special classes of nonlinear systems [5], [23]. For the class of global

Lipschitz nonlinear systems, the existence condition has been estab-

lished for a full-order observer and also for reduced-order observers,

respectively, in [24] and [32]. The design method is based on the so-

lution of a Riccati equation. More recently, based on the linear matrix

inequality (LMI) approach both the proportional and proportional in-

tegral observer for the nonlinear descriptor system have been proposed

in [17]. According to [17, Remark 1], the nonlinear systems considered

in this paper are more general than that in [5], [24], [32]. Moreover, we

proposed to extend the design of a proportional observer for an unsquare

(rectangular) switched descriptor system that includes both UI and

Lipschitz nonlinearities. The systems considered are also in a general

form and seem to be the first using convex optimization. Briefly, an

extension of the UIO design for a linear system to a nonlinear system

is proposed.

This paper is organized as follows. Section II presents the problem

statement. A design method of the proportional observer and the main

results of this note are given in Section III. In Section IV, the per-

formance of the proportional switched observer is evaluated through

two numerical examples. The proof of the detectability condition is

provided in the Appendix. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

Consider the switched nonlinear descriptor systems

Eα (k+1)xk+1 = Aα (k )xk + Fα (k )dk + Hα (k )φk

yk = Cα (k )xk + Gα (k )dk (1)

where Eα (k+1) and Aα (k ) ∈ R
p×n are in the general form and

may be rectangular, Fα (k ) ∈ R
p×q , Hα (k ) ∈ R

p×n φ , Cα (k ) ∈ R
m ×n ,

Gα (k ) ∈ R
m ×q , p ≤ n, x ∈ R

n , d ∈ R
q , φk = φ(xk , uk , k): R

n ×
R

n u × N → Rn φ , and y ∈ R
m denote, respectively, the descriptor

vector, the unknown input vector, the nonlinearity vector and the out-

put vector. In the sequel, disturbances or partial inputs that are inac-

cessible are called unknown inputs. The signal u ∈ R
n u is the con-

trol input vector. The variable α(k) is a piecewise constant switching

signal taking value from the finite index set ε = {1, 2, . . . , h}. At a

switching time k, we have α(k − 1) �= α(k). The ordered sequence

of the switching times is said to be the switching time sequence of

the switching signal. It is assumed that the switching time sequence

is real-time accessible, depending on the control input or on the mea-

sured output, or using a finite automation or any strategy. The family

of matrices {(Ei , Ai , Fi , Hi , Ci , Gi ) : i ∈ ε} are parameterized by an

index set ε = {1, 2, . . . , h} and i = α(k). Moreover, α(k) = i and

α(k + 1) = j means that the matrices (Ej , Ai , Fi , Hi , Ci , Gi , Di )
are activated.

Notation 1: (·)T stands for the transpose matrix, (∗) is used for

the blocks induced by symmetry, (·) > 0 denotes a symmetric positive

definite matrix, (·)+ is the pseudoinverse matrix, (·)⊥ is the orthogonal

complement, || · || stands for the Euclidean norm, and (·)k+
stands for

(.)α (k ) ,α (k+1) , for instance, Tk+
= Tα (k ) ,α (k+1) .

Remark 1: The orthogonal complement A⊥ for a real n × p matrix

A with rank q is defined as an (n − q) × n matrix such that AA⊥ = 0
and A⊥A⊥T > 0.

Assumptions: In the sequel, the following are assumed.

The nonlinearity φ(xk , uk , k) is globally Lipschitz in x with

Lipschitz constant γ, i.e.

‖φ(xk , uk , k) − φ(x̂k , uk , k)‖ ≤ γ ‖xk − x̂k ‖

∀u ∈ R
n u , k ∈ N.

For instance, the sinusoidal terms usually encountered in many

problems of robotics are all global Lipschitz. Moreover, most

nonlinearities are local Lipschitz if they are considered in a

given neighborhood (see [23, def.])
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Eα (k+1) Fα (k ) 0

0 Gα (k ) 0

Cα (k+1) 0 Gα (k+1)





= n + rank Gα (k+1) + rank

[

Fα (k )

Gα (k )

]







rank

[

zEi − Ai −Fi

Ci Gi

]

= n + rank

[

Fi

Gi

]

= ∀ |z| ≥ 1, i ∈ ε


















p + 2m > n + q + rank Gα (k )

rank

[

Fα (k )

Gα (k )

]

= q

rank
[

Cα (k ) Gα (k ) = m
]

.

Remark 2: Define

V1 =





In 0 0

Cα (k+1) 0 −Im

0 Im 0





V2 =





In 0 0

0 Iq 0

0 0 −Iq





Γ =





In Fα (k ) 0

0 Gα (k ) 0

Cα (k+1) 0 Gα (k+1)



.

For Eα (k+1) = In , the assumption A2 becomes equivalent to

[11, Assumption (12)], since

rank Γ = n + rank Gα (k+1) + rank

[

Fα (k )

Gα (k )

]

is equivalent to

rank V1ΓV2 =





In 0 0

0 Iq 0

0 0 −Iq





= n + rank Gα (k+1) + rank

[

Fα (k )

Gα (k )

]

which is equivalent to

rank





In Fα (k ) 0

0 Cα (k+1)Fα (k ) Gα (k+1)

0 Gα (k ) 0





= n + rank Gα (k+1) + rank

[

Fα (k )

Gα (k )

]
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which is equivalent to [11, eq. (12)]. In addition, for α(k + 1) = α(k),

the assumption A2 becomes equivalent to [29, condition (1–1)].

Remark 3: The assumptions

rank

[

Fα (k )

Gα (k )

]

= q

rank[Cα (k ) Gα (k ) ] = m

ensure, respectively, that the UIs and measurements are linearly in-

dependent. This can always be satisfied by redefining the UI and the

measurement vector [10]. While, according to Remark 1, p + 2m >

n + q + rank Gα (k ) is necessary in order to ensure that Θ⊥
k+

is well

defined.

Our aim is to design an observer in the form

zk+1 = Πk+
zk + Kk+

yk + Tk+
Hα (k )φ (x̂k , uk , k)

x̂k = zk + Nα (k−1) ,α (k )yk (2)

where zk ∈ R
n and

[ Tk+
Nk+

K1k+
Πk+

] = ΨΘ+
k+

− Zα (k )Θ
⊥
k+

with

Θk+
=









Eα (k+1) Aα (k ) Fα (k ) 0

Cα (k+1) 0 0 Gα (k+1)

0 −Cα (k ) −Gα (k ) 0

0 −In 0 0









Ψ = [ In 0n×(n +2q ) ], Θ
⊥
k+

= (In + p+2m − Θk+
Θ+

k+
)

Kk+
= K1k+

+ Πk+
Nα (k−1) ,α (k ) .

The problem of the observer design is also reduced to finding matrices

Zα (k ) such that the estimate x̂k converges asymptotically to the state

xk .

III. OBSERVER DESIGN

In this section, a new method is presented to design the observer (2)

for a switched nonlinear system (1). The following theorem will give

the structure of the observer.

Theorem 1: Under A2, there exist matrices Tk+
, Nk+

, K1k+
, and

Πk+
such that

Tk+
Eα (k+1) + Nk+

Cα (k+1) = In (3)

Πk+
= Tk+

Aα (k ) − K1k+
Cα (k ) (4)

Tk+
Fα (k ) − K1k+

Gα (k ) = 0 (5)

Nk+
Gα (k+1) = 0 (6)

and the difference of the state-estimation error ek = xk − x̂k becomes

ek+1 = Πk+
ek + Tk+

Hα (k ) φ̃k (7)

where

φ̃k = φ(xk , uk , k) − φ(x̂k , uk , k) (8)

Kk+
= K1k+

+ Πk+
Nα (k−1) ,α (k ) (9)

Remark 4: Consider the single system (1) where ε = {1}, α(k + 1) =
α(k + 1) = 1, Eα (k+1) = E1 , Aα (k ) = A1 , Fα (k ) = F1 , Hα (k ) = 0,

Cα (k ) = C1 and Gα (k ) = G1 . When G1 has a full row rank, the ma-

trix C12 defined in [10] is necessarily equal to zero. Consequently, the

matrices N and M defined by [10, eqs. (24) and (25)] cannot be com-

puted, and the observer is unfeasible. Furthermore, in our approach,

when G1 has a full row rank, it follows that the only N1 ,1 that fulfills

N1 ,1G1 = 0 is the zero matrix. So, the observer (2) is solvable, pro-

vided the matrix Π1 ,1 = T1 ,1A1 − K1 ,1C1 is stable, T1 ,1E1 = In ,

and K11 , 1
G1 = T1 ,1F1 . In other words, E1 must be nonsingular

(T1 ,1 = E−1
1 ) and the row image of E−1

1 F1 has to be included in

the row image of G1 , while the solution K1 ,1 of K11 , 1
G1 = E−1

1 F1

must ensure the stability of Π1 ,1 = E−1
1 A1 − K1 ,1C1 . This is very

restrictive, but a solution may exist. So, our observer may exist even

if the number of UI in the measurement equation is equal to the num-

ber of the measurement. In addition, the detectability condition A3 is

the usual condition defined in UIO theory; see, for instance, in [10,

eq. (23)]. So, the methodologies proposed are no less restrictive than

those reported in the literature [6], [8], [10], [11], [17], [29].

Proof: Suppose that (3) holds, then ek+1 = xk+1 − x̂k+1 becomes

ek+1 = Tk+
Eα (k+1)xk+1 − zk+1 − Nk+

Gα (k+1)dk+1

and from (1), (2), and (8), ek+1 becomes

ek+1 = (Tk+
Aα (k ) − Πk+

Tk+
Eα (k ) − Kk+

Cα (k ) )xk

+ Πk+
ek + Tk+

Hα (k ) φ̃k − Nk+
Gα (k+1)dk+1

+ (Tk+
Fα (k ) − (Kk+

− Πk+
Nα (k−1) ,α (k ))Gα (k ) )dk . (10)

Substituting (9) into (10) and using the constraints (4)–(6), Tα (k−1) ,α (k )

Eα (k ) + Nα (k−1) ,α (k )Cα (k ) = In , (7) is obtained. Rewriting (7) and

(3)–(6), respectively, leads to

ek+1 = [ Tk+
Nk+

K1k+
Πk+

]ϕ1α (k )ek

+ [ Tk+
Nk+

K1k+
Πk+

]ϕ2α (k ) φ̃k (11)

Ψ = [ Tk+
Nk+

K1k+
Πk+

]Θk+
(12)

where

ϕ1α (k ) =









Aα (k )

0m ×n

−Cα (k )

0n×n









, ϕ2α (k ) =









Hα (k )

0m ×n

0m ×n

0n×n









The solution [ Tk+
Nk+

K1k+
Πk+

] of (12) depends on the rank

of matrix Θk+
. A solution exists if and only if [25]

rank

[

Θk+

Ψ

]

= rank Θk+
(13)

which is equivalent to A2. Therefore, under A2, the general solution of

(12) is

[ Tk+
Nk+

K1k+
Πk+

] = ΨΘ+
k+

− Zα (k )Θ
⊥
k+

(14)

where Θ⊥
k+

= (In + p+2m − Θk+
Θ+

k+
) and Zα (k ) is an arbitrary matrix

of appropriate dimension.

Substituting (14) into (11) gives (7), where Πk+
and Tk+

are deter-

mined by known matrices and by the arbitrary matrix Zα (k ) as follows:

Πk+
= ΨΘ+

k+
ϕ1α (k ) − Zα (k )Θ

⊥
k+

ϕ1α (k ) (15)

Tk+
Hα (k ) = ΨΘ+

k+
ϕ2α (k ) − Zα (k )Θ

⊥
k+

ϕ2α (k ) . (16)

�

Now, the condition of global stability of (7) is stated in the following

theorem.
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Theorem 2: If there exist symmetric positive definite matrices

P1 , P2 , . . . , Ph and matrices U1 , U2 , . . . , Uh satisfying









Pi + P T
i − Pj X1 X2 0

∗ Pi 0 γIn

∗ ∗ In 0

∗ ∗ ∗ In









> 0 ∀i, j ∈ ε, (17)

then the state-estimation error ek converges globally toward the

origins X1 ,2 = PiΨΘ+
i ,j ϕ1 i − UiΘ

⊥
i ,j ϕ1 i and X2 = PiΨΘ+

i ,j ϕ2 i −

UiΘ
⊥
i ,j ϕ2 i . Moreover, the resulting observer gains are given by (9) and

(14), where the matrices Zi ’s are given by Zi = P −1
i Ui .

Proof: Consider the switched Lyapunov function V (ek , k) =
eT

k Pα (k )ek where Pα (k ) > 0 is a positive definite matrix. If such a

Lyapunov function exists, and its difference ∆V = V (ek+1 , k + 1) −
V (ek , k) is negative definite along system trajectories of (7), then the

origin of the system (7) is globally asymptotically stable. By computing

the difference ∆V along the solution of (7), ∆V is given by

∆V = eT
k+1Pα (k+1)ek+1 − eT

k Pα (k )ek

= eT
k ΠT

k+
Pα (k+1)Πk+

ek − eT
k Pα (k )ek + 2eT

k ΠT
k+

Pα (k+1)Tk+

× Hα (k ) φ̃k + φ̃T
k HT

α (k )T
T
k+

Pα (k+1)Tk+
Hα (k ) φ̃k

≤ eT
k ΠT

k+
Pα (k+1)Πk+

ek + 2eT
k ΠT

k+
Pα (k+1)Tk+

Hα (k ) φ̃k

+ φ̃T
k HT

α (k )T
T
k+

Pα (k+1)Tk+
Hα (k ) φ̃(k)

− eT
k Pα (k )ek − φ̃T

k φ̃k + γ2eT
k ek

since, from A1 and (8), we have −φ̃T
k φ̃k + γ2eT

k ek ≥ 0.

Now, ∆V can be written as

∆V (ek , k) ≤ eT
a k

[

Γk+
ΠT

k+
Pα (k+1)Tk+

Hα (k )

∗ HT
α (k )T

T
k+

Pα (k+1)Tk+
Hα (k ) − In φ

]

ea k

where Γk+
= ΠT

k+
Pα (k+1)Πk+

− Pα (k ) + γ2In and eT
a k

= [eT
k φ̃T

k ].

The difference ∆V (ek , k) is negative definite for any [eT
k φ̃T

k ] �= 0 if

[

Γk+
ΠT

k+
Pα (k+1)Tk+

Hα (k )

∗ HT
α (k )T

T
k+

Pα (k+1)Tk+
Hα (k ) − In φ

]

< 0. (18)

As this inequality has to be satisfied under the arbitrary switching law,

it follows that it should hold for special configuration α(k + 1) = j

and α(k) = i. Define X3 = Pi − ΠT
i,j Pj Πi ,j − γ2In , and then (18)

becomes
[

X3 −ΠT
i,j Pj Ti ,j Hi

∗ −HT
i T T

i,j Pj Ti ,j Hi + In φ

]

> 0 ∀i, j ∈ ε (19)

which is equivalent, by Schur complement, to







Pj
∣

∣
Pj Πi ,j Pj Ti ,j Hi

∗

∣

∣

∣
Pi − γ2In 0

∗
∣

∣

∗ In φ







> 0 ∀i, j ∈ ε

which is equivalent, by Schur complement, to













Pj Pj Πi ,j Pj Ti ,j Hi 0

∗ Pi 0 γIn

∗ ∗ In φ
0

∗ ∗ ∗ In













> 0 ∀i, j ∈ ε

which is equivalent by [31, Lemma 1] to











Pi + P T
i − Pj

∣

∣
PiΠi ,j PiTi ,j Hi 0

∗

∣

∣

∣ Pi 0 γIn

∗

∣

∣

∣ ∗ In φ
0

∗

∣

∣

∣ ∗ ∗ In











> 0 ∀i, j ∈ ε

(20)

where the matrices S, M , Q, and G in [31] are directly identified by

S = Pj , M T = [Πi ,j Ti ,j Hi 0], G = Pi , and

Q =





Pi 0 γIn

∗ In φ
0

∗ ∗ In



.

Substituting (16) and Ui = PiZi into (20) with α(k) = i and

α(k + 1) = j, (17) is obtained. �

Remark 5: The feasibility of (17), or equivalently, of (19), implies

that the pairs (ΨΘ+
i , iϕ1 i , Θ⊥

i , iϕ1 i ) are detectable. Indeed, according

to Theorem 2, satisfying (17) is equivalent to guarantee the stability of

the state-estimation error (7), whatever the switching rule may be. This

includes the case where the switching rule leads to a linear behavior,

i.e., α(k + 1) = α(k) = i and Πi , i has to be Hurwitz. In other words,

for α(k + 1) = α(k) = i, the existence of a solution Pi > 0, Ui of

the LMI (17) needs that the matrix Πi , i = ΨΘ+
i , iϕ1 i − ZiΘ

⊥
i , iϕ1 i is

Hurwitz (in the meaning of Lyapunov stability), since the element (1, 1)
of (19) implies −Pi + ΠT

i,iPiΠi , i < −γ2In +m < 0.

Remark 6: Of course, the switched detectability of the system (7) is

not ensured by the assumption that, for each subsystem i ∈ ε, the pair

(ΨΘ+
i , iϕ1 i , Θ⊥

i , iϕ1 i ) is detectable (see the example in [4, Sec. 7.2]),

but the detectability of each pair (ΨΘ+
i , iϕ1 i , Θ⊥

i , iϕ1 i ) is a necessary

condition to solve (17). Moreover, an arbitrary choice of Ti , i can involve

a loss of detectability of the pair (ΨΘ+
i , iϕ1 i , Θ⊥

i , iϕ1 i ) (see [9]). To

overcome the problem of an arbitrary choice of Ti , i , the computation

of a suitable Ti , i is included in the design procedure. That is why

(7) is rewritten as (11), where [ Tk+
Nk+

K1k+
Πk+

] is given

by (14). Thus, the matrix Zi involved in Ti , i (14) plays the role of a

parametrization. The switched observer design is finally reduced to the

computation of the gain matrices Zi , i ∈ ε, ensuring the asymptotic

stability of system (7) under arbitrary switching signal.

Now, the following results can be established.

Lemma 1: There exist matrices Zi such that the matrices Πi , i =
ΨΘ+

i , iϕ1 i − ZiΘ
⊥
i , iϕ1 i are Hurwitz if and only if the pair (ΨΘ+

i , iϕ1 i ,

Θ⊥
i , iϕ1 i ) is detectable, which is equivalent to (21), which is equivalent

to A3.

rank

[

zIn − ΨΘ+
i , iϕ1 i

Θ⊥
i , iϕ1 i

]

= n ∀ |z| ≥ 1. (21)

Proof: See the Appendix. �

IV. EXAMPLES

In this section, the results are illustrated with two simulations. In

the first one, the studied system is nonsingular, and it is derived from

the continuous system of [24], while the second simulation concerns

a switched systems subject to UI, nonlinearities, and algebraic con-

straints.

Example 1: From [24], the observer (2) for system (1a,1b) is guar-

anteed to be stable for all nonlinearities with Lipschitz constant of

magnitude less than 0.49. Using the aforementioned LMI formulation,

it is proposed to find the largest Lipschitz constant γ such that the ob-

server (2) exists for system (1). The system (1a,1b) considered in [24]

is first approximated by the Euler approximation, where, for a good ap-

proximation, the sample time is fixed to Te = 0.01 s. Let us consider
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the discrete-time model (1), where ε = {1}, α(k) = 1 ∀k, E1 = I ,

A1 = I2 + Te Ā, F1 = 0, G1 = 0, H1 = Te I2 , C1 = [ 0 1 ], and

Ā = [ 0 1
1 −1

].
It is assumed that the nonlinearity φ(xk , uk , k) is globally Lipschitz

in xk with Lipschitz constant γ, and A2 holds since E = I2 and A3

holds for all z.

For a known Lipschitz constant γ, Theorem 2 gives the gain observer

Z1 such that observer (2) for system (1) exists. Theorem 2 can be

reformulated as the following convex optimization problem

max
P 1 ,U 1

γ subject to (17) and P1 = P T
1 > 0 (22)

where i = j = 1

Θk+
=









I2 A1

C1 0

0 −C1

0 −I2









and Ψ = [ In 0n×n ]. Applying the convex optimization problem de-

fined by (22), the following results are obtained: γ = 0.9950

T1 ,1 =

[

1 −9.99

0 0.0141

]

N1 ,1 =

[

9.99

0.9859

]

K1 ,1 =

[

−0.8881

0.0152

]

Π1 ,1 =

[

0.9001 0

0.0001 0.0047

]

.

It can be noted that the maximal constant of Lipschitz obtained by

the present approach is larger than the Lipschitz constant given by [24].

If C1 = [ 1 0 ], the maximal constant of Lipschitz is γ = 1.4142. The

following example shows that a switched observer may exist for a more

general class.

Example 2: Consider the switched nonlinear descriptor systems (1),

where

Ei =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0







, Fi =







f11 i
0

0 f22 i

0 0

0 1







Ai =







−1 a12 i
0 a14 i

−1 0 0 1

0 −1 a33 i
0

0 0 0 0.5







, xk =







x1k

x2k

x3k

x4k







Hi =







1

0

h31 i

0







, φk = γ sin x1k , Ci =

[

1 0 0 0

0 0 c23 i
1

0 0 0 c34 i

]

,

Gi =

[

1 0

0 0

1 0

]

, dk =

[

d1k

d2k

]

, ε = {1, 2}, γ = 0.5,

Te = 0.01 s, d1k = sin 4kTe , d2k = sin 0.1kTe

a121
= 0.4, a122

= 0.6, a331
= −0.4, a332

= −0.6

a141
= 0.2, a142

= 0, c231
= 1, c232

= 0, c341
= 1, c342

= 0

h311
= 1, h312

= 0, f111
= 0, f112

= 1, f221
= 1, f222

= 0

and where the switching time sequence is given by Table I.

TABLE I
SWITCHING SEQUENCE

Fig. 1. Switching time sequence and state estimation performance. (a) Switch-
ing time sequence and state estimation. (b) Zoom of the state estimation.

Remark 7: If the switching time sequence is unknown a priori, a

switching rule can be defined, for instance, see [20, example 1].

Algorithm

1) The assumption A1 holds for γ = 0.5. Assumption A2 holds

for all couples {(2, 2); (2, 1); (1, 1); (2, 2)}, for instance,

α(k + 1) = 2, α(k) = 1, and the equality





E2 F1 0

0 G1 0

C2 0 G2



 = n + rank G2 + rank

[

F1

G1

]

is satisfied. The assumption A3 holds for all |z| ≥ 1 and for all

i ∈ ε = {1, 2}.
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2) From Table I, ϕ11
, ϕ21

, ϕ12
, ϕ22

, Θ2 ,2 , Θ2 ,1 , Θ1 ,1 , Θ1 ,2 , and

Ψ are computed. Since assumptions A1–A4 hold, one can solve

the convex optimization problem defined in Theorem 2. More

precisely, finding P1 , P2 , U1 , U2 subject to P1 = P T
1 > 0, P2 =

P T
2 > 0, (17) with i, j = 2, 2, (17) with i, j = 2, 1, (17) with

i, j = 1, 1, and (17) with i, j = 1, 2. After 26 iterations, the

gains Z1 and Z2 are obtained. From (14), we deduce

[ T2 ,2 N2 ,2 K12 , 2
Π2 ,2 ] = ΨΘ+

2 ,2 − Z2Θ
⊥
2 ,2

[ T2 ,1 N2 ,1 K12 , 1
Π2 ,1 ] = ΨΘ+

2 ,1 − Z2Θ
⊥
2 ,1

[ T1 ,1 N1 ,1 K11 , 1
Π1 ,1 ] = ΨΘ+

1 ,1 − Z1Θ
⊥
1 ,1

[ T1 ,2 N1 ,2 K11 , 2
Π1 ,2 ] = ΨΘ+

1 ,2 − Z1Θ
⊥
1 ,2 .

3) Using the Matlab/Simulink software, two S-functions are writ-

ten, the first for system (1) and the second for observer (2). Ac-

cording to Table I, the matrices Tk+
, Kk+

, Πk+
, and Nα (k−1),α (k )

are updated with Kk+
= K1k+

+ Πk+
Nα (k−1) ,α (k ) .

Simulation results show, through Fig. 1(a) and (b), a good state-

estimation performance. The estimation of the state x4 is not presented

due to space limitation.

Remark 8: If a common quadratic Lyapunov function V (ek , k) =
eT

k Pek is imposed (i.e., P1 = P2 = P and U1 = U2 = U ), the corre-

sponding LMIs are found to be unfeasible. Indeed, the polyquadratic

stability is less conservative than the quadratic stability.

Remark 9: If the convex optimization, defined by (22), is applied,

the following maximal bound γ is obtained for different value of h311

h311
1 1.2 1.26 1.27 1.28

γmax 184.3 98.87 49.53 35.05 1.1768

where the parameter h311
is a coefficient of the matrix Hα (k ) of system

(1). If h311
increases, then γmax decreases, since there is a linear

dependant of the nonlinear term φ(xk , uk , k).

V. CONCLUSION

A rigorous method for the design of observers for switched nonlinear

descriptor systems in the presence of a UI has been presented. Existence

conditions of such observers have been given and proved with a strict

LMI formulation. Furthermore, a polyquadratic stability is used to

assess the state estimation. It is interesting to note that the systems

addressed in this paper are of a more general class than those reported

in the literature. Moreover, from [27], an extension to design a robust

observer for an uncertain switched descriptor system can be developed,

and this is actually studied.

APPENDIX

It is proved that assumption A3 or (21) is equivalent to the existence

of matrices Zi such that Πi , i are Hurwitz.

Proof A3 ⇔ (21): Define the following nonsingular matrices

W1 i , W3 , and the full-column rank matrix W2 i

W1 i =

[

In 0

−Θ+
i , iϕ1 i I2(n + q )

]

, W2 i =





In −ΨΘ+
i , i

0 Θ⊥
i , i

0 Θi , iΘ
+
i , i





W3 =











−In 0 0 0 0

zIn In 0 0 0

0 0 In 0 0

0 0 0 −Iq 0

0 0 0 zIq Iq











.

According to Remark 5, for α(k + 1) = α(k) = i the existence of

a solution Pi > 0, Ui of the LMI (17) needs that the matrix Πi , i is

Hurwitz; therefore, each pair (ΨΘ+
i , iϕ1 i , Θ⊥

i , iϕ1 i ) must be de-

tectable. The proof is decomposed in two parts.

1) Let us prove that A3 is equivalent to

rank

[

zIn Ψ

ϕ1 i Θi , i

]

− 2n − rank Gi

= n + q ∀ |z| ≥ 1, i ∈ ε. (23)

2) Let prove that (23) is equivalent to (21).

Proof 1: From W3 , the relation (23) is equivalent to

rank

[

zIn Ψ
ϕ1 i Θi

]

W3 − 2n − rank Gi = n + q ∀ |z| ≥ 1, i ∈ ε

which is equivalent to

rank





zEi − Ai −Fi 0

zCi zGi Gi

Ci Gi 0



− rank Gi = n + q ∀ |z| ≥ 1, i ∈ ε

which is equivalent to A3.

Proof 2: Since Θ+
i , iΘi , iΘ

+
i , i = Θ+

i , i , Θi , iΘ
+
i , iΘi , i = Θi , i , and

rank

[

Θi , i

Ψ

]

= rank Θi , i

we obtain (23)

⇔ rank W2 i

[

zIn Ψ
ϕ1 i Θi , i

]

W1 i − 2n − rank Gi

= n + q ∀ |z| ≥ 1, i ∈ ε

⇔ rank Θi , i + rank

[

zIn +m − ΨΘ+
i , iϕ1 i

Θ⊥
i , iϕ1 i

]

− 2n − rank Gi

= n + q ∀ |z| ≥ 1, i ∈ ε

⇔ rank

[

Fi

Gi

]

+ rank

[

zIn +m − ΨΘ+
i , iϕ1 i

Θ⊥
i , iϕ1 i

]

= n + q ∀ |z| ≥ 1, i ∈ ε

⇔ (22)

where rank Θi , i = 2n + rank Gi + rank [ F i
G i

] and rank[ F i
G i

] = q.
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[3] G. Besançon and H. Hammouri, “On uniform observation of nonunifor-
maly observable systems,” Syst. Control Lett., vol. 29, pp. 9–19, 1996.
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An Extension of the Argument Principle and Nyquist

Criterion to a Class of Systems With Unbounded

Generators

Makan Fardad and Bassam Bamieh

Abstract—The Nyquist stability criterion is generalized to systems where
the open-loop system has infinite-dimensional input and output spaces and
an unbounded infinitesimal generator. The infinitesimal generator is as-
sumed to be a sectorial operator with trace-class resolvent. The main result

is obtained through use of the perturbation determinant and an exten-
sion of the argument principle to infinitesimal generators with trace-class
resolvents.

Index Terms—Argument principle, infinite-dimensional system, Nyquist
stability criterion, perturbation determinant, unbounded infinitesimal
generator.

I. INTRODUCTION

The Nyquist criterion is of particular interest in system analysis as

it offers a simple visual test to determine the stability of a closed-

loop system for a family of feedback gains [1], [2]. Extensions of the

Nyquist stability criterion exist for certain classes of distributed [3] and

time-periodic [4] systems. Desoer and Wang [3] consider distributed

systems in which the open-loop transfer function G(s) belongs to the

algebra of matrix-valued meromorphic functions of finite Euclidean

dimension, and the Nyquist analysis is carried out by performing a

coprime factorization on G(s).

To motivate the discussion in this paper, let us first consider a

finite-dimensional (multiinput multioutput) LTI system G(s) placed

in feedback with a constant gain γI . In analyzing the closed-loop

stability of such a system, we are concerned with the eigenvalues in

C
+ of the closed-loop dynamics Acl . If s is an eigenvalue of Acl ,

then it satisfies det[sI − Acl ] = 0. Now to check whether the equation

det[sI − Acl ] = 0 has solutions inside C
+ , one can apply the argument

principle to det[I + γG(s)] as s traverses some path D enclosing C
+ .

To elaborate, let us assume that we are given a state-space realization

of the open-loop system. Then, using

det[I + γG(s)] =
det[sI − Acl ]

det[sI − A]
(1)

if one knows the number of unstable open-loop poles, one can determine

the number of unstable closed-loop poles by looking at the plot of

det[I + γG(s)]
∣

∣

s∈D
. But in the case of distributed systems, the open-

loop and closed-loop infinitesimal generators A and Acl are operators

on an infinite-dimensional Hilbert space X and can be unbounded.

Hence, it is not clear how to define the characteristic functions det[sI −
A] and det[sI − Acl ]. In this paper, we find an analog of (1) applicable

to unbounded A and Acl and use operator-theoretic arguments to relate
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