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a b s t r a c t

In this paper, the problems of state and fault estimation are addressed for a class of switched descriptor
systems subject to Lipschitz nonlinearities and unknown inputs (UI). The UI appear both on the dynamic
and on the measurement equations. Two problems are addressed by L2-gain minimization with the use
of switched Lyapunov functions and formulated by LMI. First, a functional observer for switched Lipschitz
nonlinear descriptor system is proposed for robust state estimation. Second, fault estimation is performed
by filtering the output estimation error, as usually done in the residual generation framework. Moreover,
frequency weighting functions can be used to shape the response to the fault and thus improve the
estimation.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Controller and/or observer design for switched systems has re-
cently receivedmuch attention. Switched systems are a class of hy-
brid systems defined by a collection of dynamical (linear and/or
nonlinear) subsystems together with a switching rule specifying
the switching between the subsystems. Surveys on switched sys-
tems are available in Cortes (2008), Lieberzon and Morse (1999)
and Sun and Ge (2005). Many arising problems were treated
for switched systems: stability (Johansson & Rantzer, 1998; Sun,
Wang, & Xie, 2006), output-feedback (Daafouz, Riedinger, & Iung,
2002; Farral, Mhaskar, & Christofides, 2005), state estimation
(Koenig, Marx, & Jacquet, 2008).

The descriptor systems generalize the state-space systems by
encompassing both differential and static relations (Dai, 1989; Lu-
enberger, 1977; Xu& Lam, 2006).Many results have been extended
to descriptor systems concerning stability, control or state estima-
tion (Dai, 1989; Masubuchi, Kamitane, Ohara, & Suda, 1997), fault
estimation (Koenig, 2005) and fault tolerant control (Gao & Ding,
2007; Marx, Koenig, & Georges, 2004).

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Delin Chu under
the direction of Editor Ian R. Petersen.

E-mail addresses: damien.koenig@esisar.grenoble-inp.fr (D. Koenig),
benoit.marx@univ-lorraine.fr (B. Marx), sebastien.varrier@esisar.grenoble-inp.fr
(S. Varrier).
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The motivation of the present work is to extend some
results on state and fault estimation to switched descriptor
systems subjected to unknown inputs (UI), faults and Lipschitz
nonlinearities. This formalism allows to model systems with both
dynamic and static behaviors, with functioning mode changes
and which inputs are partially unavailable to measurement (fault,
disturbance, etc.). Despite its generality, only few results exist for
the class of discrete time switched descriptor systems (DTSDS).
In Haidar and Boukas (2008) and Ma and Boukas (2008) stability
of Markovian descriptor systems are studied. In Koenig and
Marx (2009), H∞-filtering and state feedback are treated but no
nonlinearities are considered. Proposing a unified approach to
robust state filtering and fault diagnosis for DTSDS, two objectives
are aimed here. The first objective is to relax the perfect UI
decoupling conditions needed for state estimation in Koenig et al.
(2008) by using the L2-approach. Moreover, in order to obtain
relaxed stability conditions, multiple Lyapunov functions are used
to derive LMI conditions and introduce some non necessary
positive definite slack variables. The second one is to perform
robust fault diagnosis via robust fault estimation and to generalize
(Koenig et al., 2008), where only disturbance UI were envisaged,
but no diagnosis was performed. The objective of fault diagnosis
is to highlight the faults (actuator or sensor dysfunction) while
being robust to the disturbance UI (Blanke, Kinnaert, Lunze, &
Staroswiecki, 2006). In observer-based fault diagnosis, the output
estimation error is usually used as a primary residual signal. This
primary residual signal, affected by both disturbance and fault,
is filtered by a post-filter to obtain a robust fault estimate. The
state and fault estimation are performed in a unified way since
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Fig. 1. State filtering and fault estimation scheme.

the generating systems of their respective error estimations is
written similarly. One should note that no previous works have
considered the problem of robust fault diagnosis for nonlinear
switched descriptor systems.

This note is organized as follows. The problem is stated in
Section 2. In Section 3, the state and fault observers are designed.
Before concluding, Section 4 is devoted to a numerical example.

Notation 1. For any square matrix M, M > 0 (resp. M < 0) means
that the matrix M is a real symmetric positive (resp. negative) definite
and S(M) is defined by S(M) = M + MT . The blocks induced by
symmetry are denoted ∗, In is the n×n identitymatrix, 0n (resp. 0n×m)
is the n × n (resp. n × m) null matrix and diag(X1, . . . , Xn) is the
block diagonal matrix which diagonal entries are X1, . . . , Xn. The set
of the N first strictly positive integers is denoted NN = {1, . . . ,N}

and ℓ2 [0, ∞) denotes the space of square summable infinite vector
sequences with the usual norm ∥.∥2.

2. Problem formulation

Consider the following DTSDS:

N
j=1

αj(k + 1)Ejxk+1 =

N
i=1

αi(k) (Aixk + Biuk

+ R1
i fk + W 1

i dk + Hiφ(xk, uk, k)


(1a)

yk =

N
i=1

αi(k)

Cixk + Diuk + R2

i fk + W 2
i dk


(1b)

zk =

N
i=1

αi(k)Tixk (1c)

where x ∈ Rn, d ∈ Rnd , f ∈ Rnf , u ∈ Rnu , φ : Rn
× Rnu × N → Rnφ ,

y ∈ Rm and z ∈ Rq denote respectively the state, the UI, the fault,
the control input, the Lipschitz nonlinearity, the output vector and
the vector to be estimated, with q ≤ n. The matrices Ej may
be singular. The functions αi : N → {0, 1} (i ∈ NN ) are the
known switching signals satisfying

N
i=1 αi(k) = 1 (k ∈ N) and

specifying the activated subsystem: αi(k) = 1 and αj(k + 1) = 1
mean that the matrices (Ej, Ai, Bi,Wi, Ci) are activated at time k.
The measurements y, the vector z, the fault f and the UI d are
respectively assumed to be linearly independent i.e.

rank

Ci Di R2

i W 2
i


= m

rank (Ti) = q

rank


R1
i W 1

i
R2
i W 2

i


= nf + nd.
Assumptions. In the sequel it is assumed that:

(A1) thenonlinearityφ(xk, uk, k) is globally Lipschitz in xk i.e. there
exist a constant β s.t. ∀uk ∈ Rnu and ∀k ∈ Nφ(xk, uk, k) − φ(x̂k, uk, k)

 ≤ β
xk − x̂k

 (2)

(A2) for i ∈ NN , the triplet (Ei, Ai, Ci) is impulse observable and
detectable (Dai, 1989).

Problem 1. Consider the switched functional observer (SFO) for
the fault free DTSDS (1)

N
j=1

αj(k + 1)Ejx̂k+1 =

N
i=1

αi(k)

Aix̂k

+ Biuk + Hiφ(x̂k, uk, k) + Lirk


(3a)

ŷk =

N
i=1

αi(k)

Cix̂k + Diuk


(3b)

ẑk =

N
i=1

αi(k)Tix̂k (3c)

rk =yk − ŷk (3d)

where Li are the observer gains, x̂ and ẑ are the estimate of x and
z and r is the output estimation error. The gains Li are determined
such that:
(S1) the state estimation error, ek = xk − x̂k, is generated by
a globally asymptotically stable and impulse free system, when
dkT = 0 and fkT = 0;
(S2) the L2-gain from the UI dk to the estimation error z̃k = zk − ẑk
is bounded by a prescribed positive scalar γ1.

Problem 2. A post-filter is designed in order to estimate the
fault. The proposed SFO and post-filter are defined by (3) and (4)
respectively.

xFk+1 =

N
i=1

αi(k)

AF
i x

F
k + BF

i rk


(4a)

f̂k =

N
i=1

αi(k)

C F
i x

F
k + DF

i rk


(4b)

where f̂k is the fault estimate and xFk ∈ RnF is the filter state. The
problem is then to simultaneously determine the gains Li and the
matrices AF

i , B
F
i , C

F
i and DF

i satisfying the following specifications.
(S3) the state and fault estimation errors (ek = xk − x̂k and
efk = fk − f̂k) are generated by a globally asymptotically stable and
impulse free system, when dk = 0 and fk = 0;
(S4) theL2-gain from (wk)

T
=


(dk)T (fk)T


to the fault estimation

error efk is bounded by a prescribed positive scalar γ2.
This design procedure can be viewed as a standard H∞-control

problem, as shown in Fig. 1.

3. Robust functional observer design and fault diagnosis

The gains of the SFO (3) and filter (4) for the DTSDS (1) are
obtained by solving an LMI problem. Two Lyapunov candidate
functions are considered:

V (ek) =

N
i=1

αi(k)ekTEiTPiEiek (5)

V a(eak) =

N
i=1

αi(k)eak
TEa

i
TPaiE

a
i e

a
k (6)
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where Pi and Pai are symmetric matrices and where (eak)
T

=
(ek)T (xFk)

T (efk)
T

. It is well-known (Boyd, Ghaoui, Feron, & Bal-

akrishnan, 1994; Chadli & Darouach, 2011) that for such Lyapunov
functions:

• 1V (ek) = V (ek+1) − V (ek) < 0 implies (S1)
• Hek(γ1) = 1V (ek) + z̃Tk z̃k − γ1

2dkTdk < 0 implies (S2)
• 1V a(eak) = V a(eak+1) − V a(eak) < 0 implies (S3)

• Heak
(γ2) = 1V a(eak) + ef

T

k efk − γ 2
2 wk

Twk < 0 implies (S4).

3.1. State filtering in the fault free case

The first objective is to develop a SFO (3) for the fault free
DTSDS (1), such that the specifications (S1) and (S2) are fulfilled.
The filtering error between (3) and (1) is generated by

N
j=1

αj (k + 1) Ejek+1 =

N
i=1

αi (k)

Acliek + Hiφ̃k + Wclidk


(7a)

z̃k =

N
i=1

αi (k) Tiek (7b)

where φ̃k = φ(xk, uk, k) − φ(x̂k, uk, k), Acli = (Ai − LiCi) and
Wcli = (W 1

i − LiW 2
i ).

The following result details sufficient LMI existence conditions
of the SFO and the computation of the gains Li.

Theorem 1. The SFO (3) for the DTSDS (1), satisfying (S1) and (S2)
exists if the triplets (Ei, Ai, Ci) are finite dynamics detectable and
impulse observable (see Koenig & Marx, 2009 for conditions) and is
obtained by finding the symmetric matrices Pi ∈ Rn×n, symmetric
positive definite matrices Gi ∈ Rn×n, matrices G̃i ∈ Rn×m and
Mi ∈ R(n+nd+nφ )×n minimizing γ̄1 under the constraints (8a)–(8c) for
(i, j) ∈ N2

N .

EiTPiEi ≥ 0 (8a)
Miji < 0 (8b)
Mijj < 0 (8c)

where γ̄1 = γ 2
1 and

Mijk =

Θik Θ̄i Mi C̃T
i G̃

T
i

∗ Pj − 2Gi 0 0
∗ ∗ −Gi 0
∗ ∗ ∗ −Gi


Θ̄i =(ÃT

i G
T
i − C̃T

i G̃
T
i − Mi)

Θik =T̃ik + C̃T
i CiGiCi

T C̃i + S

MiÃi + MiCi

T C̃i + C̃T
i CiG̃iC̃i


T̃ik =diag


β2In + TiTTi − EkTPiEk, −γ̄1Ind , −Inφ


Ãi =


Ai W 1

i Hi


C̃i =

Ci W 2

i 0

.

The observer gains are obtained by

Li = G−1
i G̃i. (9)

Proof. The disturbance attenuation of the DTSDS (7) expressed by
S2 has to be satisfied under arbitrary switching laws, it follows that
Hek(γ1) < 0 and (7) are respectively equivalent to

ek+1
TEjTPjEjek+1 − γ1

2dkTdk − ekT

EiTPiEi − TiTTi


ek < 0 (10)
and

Ejek+1 = Acliek + Hiφ̃k + Wclidk (11a)
z̃k = Tiek (11b)

where i (resp. j) is the number of the activated model at time k
(resp. k+1). Substituting (11) into (10), the following inequality is
obtained:

Hek(γ1) = (∗)Pj

Acliek + Hiφ̃k + Wclidk


+ ekT


TiTTi − EiTPiEi


ek − γ1

2dkTdk < 0. (12)

Defining Θ̃ij = Θij + MiG−1
i Mi

T
+ C̃T

i G̃
T
i G

−1
i G̃iC̃i, if (8b) hold and

with two Schur complements, (8b) is equivalent to
Θ̃ii ÃT

i Gi
T

− C̃T
i G̃

T
i − Mi

∗ Pj − 2Gi


< 0. (13)

From (8b), the matrices Gi > 0 and defining M̃i = Mi
T

+ G̃iC̃i +

GiCi
T C̃i, it follows M̃T

i G
−1
i M̃i ≥ 0 or equivalently

− S

MiG−1

i G̃iC̃i


≤ MiG−1

i Mi
T

+ C̃T
i G̃

T
i G

−1
i G̃iC̃i + C̃T

i CiGiCi
T C̃i

+ S

MiCi

T C̃i + C̃T
i CiG̃iC̃i


. (14)

Adding T̃ii + S(MiÃi) to both sides of (14), it follows

T̃ii + S(MiÃi − MiG−1
i G̃iC̃i) ≤ Θ̃ij < 0. (15)

From (15), with (9) and Ãcli = Ãi − LiC̃i, it follows that (13) implies
T̃ii + S(MiÃcli) ÃT

cliGi
T

− Mi
∗ Pj − 2Gi


< 0. (16)

Pre- and post-multiplying (16) by

I ÃT

cli


and its transpose, it

follows that (16) is equivalent to

T̃ii + ÃT
cliPjÃcli < 0. (17)

Pre- and post-multiplying (17) by

ekT dkT φ̃T

k


and its transpose,

(17) becomes

Hek(γ1) + β2ekT ek − φ̃T
k φ̃k < 0 (18)

whereHek(γ1) is defined by (12). Since the nonlinearity is assumed
to be Lipschitz in x (2), then

β2ekT ek − φ̃T
k φ̃k ≥ 0. (19)

From (18) and (19) it follows that Hek(γ1) < 0 and thus (S2) is
satisfied. Moreover, when dk = 0 in Hek(γ1), it obviously follows
that 1V (ek) < 0. From Definition 1.1 of Chadli and Darouach
(2011) the system (11) is stable. Following the same steps, (8c)
implies T̃ij + ÃT

cliPjÃcli < 0. Pre- and post multiplying this inequality
by [In 0nd 0nΦ

] and its transpose, one obtains (Ai − LiCi)
TPj(Ai −

LiCi) − ET
j PiEj < 0 for (i, j) ∈ N2

N , implying that (11) is impulse
free. Thus (S1) holds which achieves the proof. �

Remark 1. The objective is the minimization of the L2-gain from
dk to ek, consequently the perfect decoupling is not sought and the
conditions assumed in Koenig et al. (2008) are not needed to solve
the LMIs (8).

The special case when the system is neither affected by
disturbances nor by nonlinearities (i.e. fk = 0, dk = 0 and
φ(xk, uk, k) = 0) is briefly envisaged in the following corollary.
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Corollary 1. A SFO (3) for the DTSDS (1) with fk = dk = φ(xk,
uk, k) = 0 exists and satisfies (S1) if there exist symmetric matri-
ces Pi ∈ Rn×n, matrices Ui ∈ Rn×n and Mi ∈ Rm×n satisfying (8) for
(i, j) ∈ N2

N with Mijk defined by

Mijk =


Θ̄ik ∗

−Ui
T

+ UiAi − MiCi Pj − S (Ui)


(20a)

Θ̄ik =S (UiAi − MiCi) − EkTPiEk. (20b)

The observer gains are: Hi = 0 and Li = U−1
i Mi.

Proof. Consider (8b) defined with (20) and UiLi = Mi, pre- and
post-multiplying it by


In Acli

T  and its transpose, then Acli
TPjAcli −

EiTPiEi < 0 and consequently 1V (ek) < 0 follows. From (8c),
impulse freeness is obtained like in the proof of Theorem 1 and
(S1) follows. �

Remark 2. For Acli = A, Ei = E and Pi = Pj = P , the
inequalities (8) with (20) imply the LMIs defined in Lemma 1 of
Xu and Yang (1999). For Acli = Ai and Ei = E, they are equivalent
to the LMIs defined in Xu and Lam (2006). For Ei = E and by
the duality principle, the results of Corollary 1 coincides with the
results of Theorem1of Chadli, Daafouz, andDarouach (2008). Thus,
Corollary 1 can be considered as a generalization of these works.

3.2. Fault estimation

In order to simultaneously design the SFO (3) and the filter
(4), the DTSDS generating the state and fault estimation errors is
written as

N
j=1

αj(k + 1)Ea
j e

a
k+1 =

N
i=1

αi(k)

Aa
clie

a
k + W a

cliwk + Ha
i φ̃k


(21a)

efk =

N
i=1

αi(k)T a
i e

a
k (21b)

where eaTk =


ekT xF

T

k ef
T

k


, Aa

cli = Aa
i − Lai C

a
i , W

a
cli = W a1

i − Lai W
a2
i ,

Ea
j = diag(Ej, InF , 0nf ) and

Aa
i =

Ai 0 0
0 0 0
0 0 −Inf

 Lai =

 Li 0
−BF

i −AF
i

DF
i C F

i


W a1

i =

W 1
i R1

i
0 0
0 Inf

 Ha
i =

Hi
0
0


T a
i
T

=

 0
0
Inf


Ca
i =


Ci 0 0
0 InF 0


W a2

i =


W 2

i R2
i

0 0


.

Since (21) is similar to (7) up to matrix and state vector
augmentations, Theorem 1 can be adapted to determine the
observer and post filter gains Lai such that (21) satisfies (S3) and
(S4).

Corollary 2. The SFO (3) and post-filter (4) for the DTSDS (1),
satisfying (S3) and (S4) exist if the triplets (Ei, Ai, Ci) are finite
dynamics detectable and impulse observable (see Koenig & Marx,
2009 for conditions) and are obtained by finding the symmetric
matrices Pi ∈ R(n+nF+nf )×(n+nF+nf ), symmetric positive definite
matrices Gi ∈ R(n+nF+nf )×(n+nF+nf ), matrices G̃i ∈ R(n+nF+nf )×(m+nF )

and Mi ∈ R(n+nF+2nf +nd+nφ )×(n+nF+nf ) minimizing γ̄2 under the
constraints (8b)–(8c)–(22) for (i, j) ∈ N2

N .

EaT
i PiEa

i ≥ 0 (22)
Fig. 2. Improved robust fault diagnosis scheme.

where γ̄2 = γ 2
2 and

Θik = T̃ a
ik + C̃aT

i Ca
i GiCaT

i C̃a
i + S


MiÃa

i + MiCaT
i C̃a

i + C̃aT
i Ca

i G̃iC̃a
i


T̃ik = diag


diag(β2In, 0nF+nf )

+ T aT
i T a

i − EaT
k PiEa

k , −γ̄2Ind+nf , −Inφ


Ãi =


Aa
i W a1

i Ha
i


C̃i =


Ca
i W a2

i 0

.

The observer and filter gains are given by Lai = G−1
i G̃i, where Gi =

diag(G1
i ,G

2
i ) and

G̃i =

G̃1
i 0n×nF

G̃2
i G̃3

i
G̃4
i G̃5

i

 (23)

with G1
i ∈ Rn×n and G2

i ∈ R(nF+nf )×(nF+nf ).

Proof. The proof is similar to the one of Theorem 1 and thus
omitted. �

Remark 3. The null block in G̃i does not introduce any equality
constraint, since it suffices to use the secondary LMI variables
G̃1
i , . . . , G̃

5
i in (23). The null block of G̃i and the block diagonal

structure of Gi imply the nullity of the (1, 2) block of Lai .

Remark 4. If the main purpose is state estimation or filtering
rather than fault estimation, the estimator design should be
slightly modified by adding R1

i f̂k in (3a), R2
i f̂k and (3b) and

by minimizing the L2-gain from the exogenous inputs to the
estimation or filtering error e or z̃.

Remark 5. Analogously to standard H∞-control and as depicted
by Fig. 2, dynamical filters can be introduced in the design proce-
dure in order to improve the fault diagnosis and avoid to impose
hard constraints on the whole frequency range (see Chapter 6.5 of
Blanke et al., 2006). The filter Wd imposes an attenuation level of
the UI in specific frequency ranges and Wf is introduced to define
the desired frequency response of f̂k to the fault.

4. Numerical example

The following example illustrates the performance of the SFO
(3) and the filter (4), proposed in Section 3. Consider the DTSDS (1)
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(a) Switching sequence αk and disturbance dk . (b) Control input uk and fault fk . (c) zk and its estimate.

(d) zk: zoom on transient response. (e) Fault estimation without filters. (f) Fault estimation withWd and Wf .

Fig. 3. Simulation results.
defined by φ(xk, uk) = 0.1 sin(x2k), Ei = diag(0, 1) and

A1 =


0.9 0.1
0 0.1


, A2 =


0.7 0.15
0 0.1


,

A3 =


0.5 0.15
0 0.1


, Bi =


i
0


, Hi =


1
0


,

R1
i =


1
0


, W 1

i =


0
0.1


, Ci

T
=


1
0.1


, TiT =


0
1


Di = 0, R2

i = 0 and W 2
i = 0.3, for i ∈ N3. The fault fk affects

the first system state and the perturbation dk affects the second
state and the measurement output yk. One can readily verify that
the system does not satisfy the UI decoupling conditions of Koenig
et al. (2008). The considered perturbation is a white noise. The sys-
tem inputs are presented in Fig. 3(a) and (b). The estimation results,
obtained for x̂0 = [1 1]T , are presented in Fig. 3(c) and (d). One can
notice that the noise disturbance is well attenuated, and the esti-
mator fast converges to the good value. The filter proposed in (4) is
implemented in order to estimate the fault fk. The result of the fault
estimation is presented in Fig. 3(e). According to Remark 5, lowpass
filters Wf and W−1

d are used and the improved results presented
in Fig. 3(f) are obtained. One can note that the estimation of the
faults quickly converge toward the real value of the fault, despite
the nonlinearities and the noise.

5. Conclusion

In this paper, a robust state and fault observer is designed
for discrete-time switched nonlinear descriptor systems. This
generic class of systems were not envisaged in the diagnosis
framework. The design objectives are to minimize the L2-gain
from the unknown inputs to the state and fault estimation errors.
LMI conditions are obtained using switched Lyapunov functions
to avoid conservatism introduced by single Lyapunov functions
and filters can be introduced to improve the fault estimation
robustness. The proposed approach could be extended to a wide
class of systems such as LPV or descriptor Takagi–Sugeno systems.
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